期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Bone Loss Induced by Simulated Microgravity,Ionizing Radiation and/or Ultradian Rhythms in the Hindlimbs of Rats 被引量:4
1
作者 ZHANG Ya Nan SHI wen Gui +6 位作者 LI He HUA jun Rui FENG Xiu wei wen jun WANG Ju Fang HE Jin Peng LEI Su wen 《Biomedical and Environmental Sciences》 SCIE CAS CSCD 2018年第2期126-135,共10页
Objective To better understand the pathological causes of bone loss in a space environment, including microgravity, ionizing radiation, and ultradian rhythms.Methods Sprague Dawley (SD) rats were randomly divided in... Objective To better understand the pathological causes of bone loss in a space environment, including microgravity, ionizing radiation, and ultradian rhythms.Methods Sprague Dawley (SD) rats were randomly divided into a baseline group, a control group, a hindlimb suspension group, a radiation group, a ultradian rhythms group and a combined-three-factor group. After four weeks of hindlimb suspension followed by X-ray exposure and/or ultradian rhythms, biomechanical properties, bone mineral density, histological analysis, microstructure parameters, and bone turnover markers were detected to evaluate bone loss in hindlimbs of rats.Results Simulated microgravity or combined-three factors treatment led to a significant decrease in the biomechanical properties of bones, reduction in bone mineral density, and deterioration of trabecular parameters. Ionizing radiation exposure also showed adverse impact while ultradian rhythms had no significant effect on these outcomes. Decrease in the concentration of the turnover markers bone alkaline phosphatase (bALP), osteocalcin (OCN), and tartrate-resistant acid phosphatase-5b (TRAP-Sb) in serum was in line with the changes in trabecular parameters.Conclusion Simulated microgravity is the main contributor of bone loss. Radiation also results in deleterious effects but ultradian rhythms has no significant effect. Combined-three factors treatment do not exacerbate bone loss when compared to simulated microgravity treatment alone. 展开更多
关键词 Bone loss MICROGRAVITY RADIATION Ultradian rhythms
暂未订购
MiR-663a Inhibits Radiation-Induced Epithelium-to-Mesenchymal Transition by Targeting TGF-β1 被引量:3
2
作者 QU Pei SHAO Zhi Ang +8 位作者 WANG Bing HE Jin Peng ZHANG Ya Nan wei wen jun HUA jun Rui ZHOU Heng LU Dong DING Nan WANG Ju Fang 《Biomedical and Environmental Sciences》 SCIE CAS CSCD 2022年第5期437-447,共11页
Objective miR-663 a has been reported to be downregulated by X-ray irradiation and participates in radiation-induced bystander effect via TGF-β1.The goal of this study was to explore the role of mi R-663 a during rad... Objective miR-663 a has been reported to be downregulated by X-ray irradiation and participates in radiation-induced bystander effect via TGF-β1.The goal of this study was to explore the role of mi R-663 a during radiation-induced Epithelium-to-mesenchymal transition(EMT).Methods TGF-β1 or IR was used to induce EMT.After mi R-663 a transfection,cell migration and cell morphological changes were detected and the expression levels of mi R-663 a,TGF-β1,and EMT-related factors were quantified.Results Enhancement of cell migration and promotion of mesenchymal changes induced by either TGF-β1 or radiation were suppressed by mi R-663 a.Furthermore,both X-ray and carbon ion irradiation resulted in the upregulation of TGF-β1 and downregulation of mi R-663 a,while the silencing of TGF-β1 by mi R-663 a reversed the EMT process after radiation.Conclusion Our findings demonstrate an EMT-suppressing effect by mi R-663 a via TGF-β1 in radiationinduced EMT. 展开更多
关键词 Epithelium-to-mesenchymal transition(EMT) Ionizing Radiation TGF-Β1 microRNA miR-663a
暂未订购
Application of interacting multiple model in integrated positioning system of vehicle
3
作者 wei wen jun GAO Xue ze +1 位作者 GE Li rain GAO Zhong jun 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2018年第3期279-285,共7页
To solve low precision and poor stability of the extended Kalman filter (EKF) in the vehicle integrated positioning system owing to acceleration, deceleration and turning (hereinafter referred to as maneuvering) ,... To solve low precision and poor stability of the extended Kalman filter (EKF) in the vehicle integrated positioning system owing to acceleration, deceleration and turning (hereinafter referred to as maneuvering) , the paper presents an adaptive filter algorithm that combines interacting multiple model (IMM) and non linear Kalman filter. The algorithm describes the motion mode of vehicle by using three state spacemode]s. At first, the parallel filter of each model is realized by using multiple nonlinear filters. Then the weight integration of filtering result is carried out by using the model matching likelihood function so as to get the system positioning information. The method has advantages of nonlinear system filter and overcomes disadvantages of single model of filtering algorithm that has poor effects on positioning the maneuvering target. At last, the paper uses IMM and EKF methods to simulate the global positioning system (OPS)/inertial navigation system (INS)/dead reckoning (DR) integrated positioning system, respectively. The results indicate that the IMM algorithm is obviously superior to EKF filter used in the integrated positioning system at present. Moreover, it can greatly enhance the stability and positioning precision of integrated positioning system. 展开更多
关键词 VEHICLE integrated positioning system information fusion algorithm extended Kalman filter (KEF) interacting multiple model (IMM)
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部