A novel soft polymer template containing a double-layer structure,which includes a thin layer of polymethylmethacrylate(PMMA)used as a pattern layer and a thicker layer of polydimethylsiloxane(PDMS)used as a back laye...A novel soft polymer template containing a double-layer structure,which includes a thin layer of polymethylmethacrylate(PMMA)used as a pattern layer and a thicker layer of polydimethylsiloxane(PDMS)used as a back layer,was fabricated from a replica molding process.Anodic aluminum oxide(AAO)template was used as the replica mold to be replicated to the polymethylmethacrylate layer by a thermal infiltration process under a vacuum condition.Results indicate that PMMA/PDMS soft templates with different sizes could be easily fabricated from the as-prepared AAO replica mold.The PMMA/PDMS soft templates were then employed to imprint a TiO_2 gel for achieving TiO_2 nano-pore arrays.After the imprinting process,the PDMS layer was firstly peeled off and the PMMA layer was then removed into acetonitrile,which can avoid any demolding problems like damages or distortions.The TiO_2 nano-pore arrays with the crystalline of anatase could be obtained at a heat treatment temperature of 450°C.展开更多
The structural and luminescence properties of nanocrystalline ZrO2 :Er^3+ films are reported. Transparent nano-ZrO2 crystalline films doped with Er^3+ have been prepared using a wet chemistry process. An intense ro...The structural and luminescence properties of nanocrystalline ZrO2 :Er^3+ films are reported. Transparent nano-ZrO2 crystalline films doped with Er^3+ have been prepared using a wet chemistry process. An intense roomtemperature emission at 1527nm with a full width at half-maximum of 46 nm has been observed, which is assigned to the ^4Ⅰ13/2 → ^4Ⅰ15/2 intra-4f^n electric transition of Er^3+. Correlations between the luminescence properties and structures of the nanocrystalline ZrO2 :Er^3+ films have been investigated. Infrared-to-visible upconversion occurs simultaneously upon excitation of a commercially available 980-nm laser diode and the involved mechanisms have also been explained. The results indicate that the nanocrystalline ZrO2:Er^3+ films might be suggested as promising materials for achieving broadband Er^3+-doped waveguide amplifiers and upconversion waveguide lasers.展开更多
基金supported by the Ministry of Science and Technology of China through 863-project under grant 2009AA03Z218the Major Program of the National Natural Science Foundation of China under Grant No.90923012the Research Fund for the Doctoral Program of Higher Education of China under grant 200806980023
文摘A novel soft polymer template containing a double-layer structure,which includes a thin layer of polymethylmethacrylate(PMMA)used as a pattern layer and a thicker layer of polydimethylsiloxane(PDMS)used as a back layer,was fabricated from a replica molding process.Anodic aluminum oxide(AAO)template was used as the replica mold to be replicated to the polymethylmethacrylate layer by a thermal infiltration process under a vacuum condition.Results indicate that PMMA/PDMS soft templates with different sizes could be easily fabricated from the as-prepared AAO replica mold.The PMMA/PDMS soft templates were then employed to imprint a TiO_2 gel for achieving TiO_2 nano-pore arrays.After the imprinting process,the PDMS layer was firstly peeled off and the PMMA layer was then removed into acetonitrile,which can avoid any demolding problems like damages or distortions.The TiO_2 nano-pore arrays with the crystalline of anatase could be obtained at a heat treatment temperature of 450°C.
基金Supported by the National Natural Science Foundation of China under Grant No 50472053, NCET (NCET04-0823) and DSTG (04020036 and 2004A10602002).
文摘The structural and luminescence properties of nanocrystalline ZrO2 :Er^3+ films are reported. Transparent nano-ZrO2 crystalline films doped with Er^3+ have been prepared using a wet chemistry process. An intense roomtemperature emission at 1527nm with a full width at half-maximum of 46 nm has been observed, which is assigned to the ^4Ⅰ13/2 → ^4Ⅰ15/2 intra-4f^n electric transition of Er^3+. Correlations between the luminescence properties and structures of the nanocrystalline ZrO2 :Er^3+ films have been investigated. Infrared-to-visible upconversion occurs simultaneously upon excitation of a commercially available 980-nm laser diode and the involved mechanisms have also been explained. The results indicate that the nanocrystalline ZrO2:Er^3+ films might be suggested as promising materials for achieving broadband Er^3+-doped waveguide amplifiers and upconversion waveguide lasers.