期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Thermal annealing affected microstructure evolution and creep behavior in amorphous TaTiZr medium-entropy alloy
1
作者 w.j.sun Y.Q.Wang +2 位作者 J.D.Zuo J.Y.Zhang G.Liu,J.Sun 《Journal of Materials Science & Technology》 2025年第22期174-187,共14页
The unique high-entropy and sluggish diffusion effects of amorphous high-entropy alloys endow them with excellent thermal stability and plastic deformation.In this work,the near-equiatomic TaTiZr amorphous medium-entr... The unique high-entropy and sluggish diffusion effects of amorphous high-entropy alloys endow them with excellent thermal stability and plastic deformation.In this work,the near-equiatomic TaTiZr amorphous medium-entropy alloy(AMEA)was prepared via the magnetron sputtering to investigate the microstructural thermostability and nanoindentation creep behavior.Thermal annealing below the glass transition temperature gave rise to the microstructural heterogeneity due to the positive mixing enthalpy in TaTiZr AMEA,which became increasingly enhanced with raising the annealing temperature.Correspondingly,there appeared a monotonic increase in hardness as well as the elastic/shear modulus,yet a reduction in strain-rate sensitivity m or an increment in shear transformation zone volume with annealing temperature.Meanwhile,the indentation morphology measured by atomic force microscope exhibited a significant transformation from pile-up to sink-in,demonstrating the degradation of plastic deformability with enhancing the microstructural heterogeneity.Based on the relaxation time spectra for Maxwell-Voigt model,the microstructural heterogeneity can restrain the activation of internal defects associated with the operation of flow units during creeping,further triggering the strain-strengthening behavior and improved creep resistance in the annealed samples.This work provides significant guidance for the structural design of high-performance amorphous alloys. 展开更多
关键词 Amorphous medium-entropy alloy NANOINDENTATION Shear transformation zone Creep deformation Microstructural heterogeneity
原文传递
EFFECTS OF THERMAL CYCLE ON MECHANICAL PROPERTIES AND FRACTOGRAPHY IN HAZ OF HQ130 STEEL 被引量:1
2
作者 B. Liu J.X.Qu w.j.sun 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2004年第3期274-278,共5页
The effect of different peak temperature T_P) and cooling time (t_(8/5)) on hardness,impact toughness and fracture morphology in the heat--affected zone (HAZ) of HQ130steel was studied by using welding thermo--simulat... The effect of different peak temperature T_P) and cooling time (t_(8/5)) on hardness,impact toughness and fracture morphology in the heat--affected zone (HAZ) of HQ130steel was studied by using welding thermo--simulation test. Experimental results showthat the impact toughness and hardness decrease with the decrease of T_P or increase oft_(8/5) under the condition of a single thermal cycle. There is a brittle zone in the vicinityof T_P=800℃, where the impact toughness is considerebly low. There is softened zonein vicinity of T_P=700℃, Where the harkness decreases but the toughness increases. Inthe practical application of multi--layer and multi--pass welding, the welding heat inputshould be strictly limited (t_(8/5)≤20s) so as to reduce the softness and brittleness in theHAZ of HQ130 steel. 展开更多
关键词 high strength steel welding thermal cycle heat-affected zone impact toughness
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部