Binary millisecond pulsars with a massive white dwarf(WD)companion are intermediate-mass binary pulsars(IMBPs).They are formed via the Case BB Roche-lobe overflow evolution channel if they are in compact orbits with a...Binary millisecond pulsars with a massive white dwarf(WD)companion are intermediate-mass binary pulsars(IMBPs).They are formed via the Case BB Roche-lobe overflow evolution channel if they are in compact orbits with an orbital period of less than 1 day.They are fairly rare in the known pulsar population;only five such IMBPs have been discovered before,and one of them is in a globular cluster.Here we report six IMBPs in compact orbits:PSRs J0416+5201,J0520+3722,J1919+1341,J1943+2210,J1947+2304 and J2023+2853,discovered during the Galactic Plane Pulsar Snapshot survey by using the Five-hundred-meter Aperture Spherical radio Telescope,doubling the number of such IMBPs due to the high survey sensitivity in the short survey time of 5 minutes.Follow-up timing observations show that they all have either a CO WD or an ONeMg WD companion with a mass greater than about 0.8M_(⊙)in a very circular orbit with an eccentricity in the order of10^(−5).PSR J0416+5201 should be an ONeMg WD companion with a remarkable minimum mass of 1.28M_(⊙).These massive WD companions lead to a detectable Shapiro delay for PSRs J0416+5201,J0520+3722,J1943+2210,and J2023+2853,indicating that their orbits are highly inclined.From the measurement of the Shapiro delay,the pulsar mass of J1943+2210 was constrained to be 1.84^(+0.11)_(-0.09)M_(⊙),and that of PSR J2023+2853 to be 1.28^(+0.06)_(-0.05)M_(⊙).展开更多
The incorporation of interface passivation structures in ultrathin Cu(In,Ga)Se_(2)based solar cells is shown.The fabrication used an industry scalable lithography technique—nanoimprint lithography(NIL)—for a 15×...The incorporation of interface passivation structures in ultrathin Cu(In,Ga)Se_(2)based solar cells is shown.The fabrication used an industry scalable lithography technique—nanoimprint lithography(NIL)—for a 15×15 cm^(2)dielectric layer patterning.Devices with a NIL nanopatterned dielectric layer are benchmarked against electron-beam lithography(EBL)patterning,using rigid substrates.The NIL patterned device shows similar performance to the EBL patterned device.The impact of the lithographic processes in the rigid solar cells’performance were evaluated via X-ray Photoelectron Spectroscopy and through a Solar Cell Capacitance Simulator.The device on stainless-steel showed a slightly lower performance than the rigid approach,due to additional challenges of processing steel substrates,even though scanning transmission electron microscopy did not show clear evidence of impurity diffusion.Notwithstanding,time-resolved photoluminescence results strongly suggested elemental diffusion from the flexible substrate.Nevertheless,bending tests on the stainless-steel device demonstrated the mechanical stability of the CIGS-based device.展开更多
基金supported by the National Natural Science Foundation of China(NSFC,Grant Nos.11988101,12133004 and 11833009)the Research Program of the Chinese Academy of Sciences(grant No.QYZDJ-SSW-SLH021 and JZHKYPT-2021-06).
文摘Binary millisecond pulsars with a massive white dwarf(WD)companion are intermediate-mass binary pulsars(IMBPs).They are formed via the Case BB Roche-lobe overflow evolution channel if they are in compact orbits with an orbital period of less than 1 day.They are fairly rare in the known pulsar population;only five such IMBPs have been discovered before,and one of them is in a globular cluster.Here we report six IMBPs in compact orbits:PSRs J0416+5201,J0520+3722,J1919+1341,J1943+2210,J1947+2304 and J2023+2853,discovered during the Galactic Plane Pulsar Snapshot survey by using the Five-hundred-meter Aperture Spherical radio Telescope,doubling the number of such IMBPs due to the high survey sensitivity in the short survey time of 5 minutes.Follow-up timing observations show that they all have either a CO WD or an ONeMg WD companion with a mass greater than about 0.8M_(⊙)in a very circular orbit with an eccentricity in the order of10^(−5).PSR J0416+5201 should be an ONeMg WD companion with a remarkable minimum mass of 1.28M_(⊙).These massive WD companions lead to a detectable Shapiro delay for PSRs J0416+5201,J0520+3722,J1943+2210,and J2023+2853,indicating that their orbits are highly inclined.From the measurement of the Shapiro delay,the pulsar mass of J1943+2210 was constrained to be 1.84^(+0.11)_(-0.09)M_(⊙),and that of PSR J2023+2853 to be 1.28^(+0.06)_(-0.05)M_(⊙).
基金InovSolarCells(PTDC/FISMAC/29696/2017)co-funded by FCT and the ERDF through COMPETE2020And by the European Union’s Horizon 2020 research and innovation programme under the grants agreements N°.720887(ARCIGS-M project)+2 种基金grand agreement N°.715027(Uniting PV)P.M.P.S.and P.A.F.would like to acknowledge FCT for the support of the project FCT UIDB/04730/2020This work was developed within the scope of the project i3N,UIDB/50025/2020&UIDP/50025/2020,financed by national funds through the FCT/MEC.
文摘The incorporation of interface passivation structures in ultrathin Cu(In,Ga)Se_(2)based solar cells is shown.The fabrication used an industry scalable lithography technique—nanoimprint lithography(NIL)—for a 15×15 cm^(2)dielectric layer patterning.Devices with a NIL nanopatterned dielectric layer are benchmarked against electron-beam lithography(EBL)patterning,using rigid substrates.The NIL patterned device shows similar performance to the EBL patterned device.The impact of the lithographic processes in the rigid solar cells’performance were evaluated via X-ray Photoelectron Spectroscopy and through a Solar Cell Capacitance Simulator.The device on stainless-steel showed a slightly lower performance than the rigid approach,due to additional challenges of processing steel substrates,even though scanning transmission electron microscopy did not show clear evidence of impurity diffusion.Notwithstanding,time-resolved photoluminescence results strongly suggested elemental diffusion from the flexible substrate.Nevertheless,bending tests on the stainless-steel device demonstrated the mechanical stability of the CIGS-based device.