In the present paper, we have studied the effect of Ge addition on the physical properties of Se-Sn-Pb chalcogenide ma- terial. The necessary physical parameters which have important role in determining the structure ...In the present paper, we have studied the effect of Ge addition on the physical properties of Se-Sn-Pb chalcogenide ma- terial. The necessary physical parameters which have important role in determining the structure and strength of the material viz. constraints, coordination number etc. have been calculated. The increasing trend has been found in cohesive energy, heat of atomization and mean bond energy. The glass transition has been studied using the Tichy-Ticha and Lankhorst approaches, which also increases with the increasing Ge contents. The increase in these physical parameters is due to the increasing covalent character in the material.展开更多
The quaternary chalcogenide glass Te9Se72Ge19-xSbx (x = 8, 9, 10, 11, 12) has been prepared by the melt quench technique. The material fragility increases due to decrease in degree of cross linking in glass matrix as ...The quaternary chalcogenide glass Te9Se72Ge19-xSbx (x = 8, 9, 10, 11, 12) has been prepared by the melt quench technique. The material fragility increases due to decrease in degree of cross linking in glass matrix as the Sb content increases. The heat of atomization decreases due to lower value of heat of atomization of antimony. The glass transition temperature is calculated by Tichy-Ticha and Lankhorst approaches. The glass seems to have high value of glass transition temperature as per theoretical calculations and is monotonically decreasing with increasing Sb content because increasing concentration of Sb reduces the cohesive energy and mean bond energy of the material.展开更多
文摘In the present paper, we have studied the effect of Ge addition on the physical properties of Se-Sn-Pb chalcogenide ma- terial. The necessary physical parameters which have important role in determining the structure and strength of the material viz. constraints, coordination number etc. have been calculated. The increasing trend has been found in cohesive energy, heat of atomization and mean bond energy. The glass transition has been studied using the Tichy-Ticha and Lankhorst approaches, which also increases with the increasing Ge contents. The increase in these physical parameters is due to the increasing covalent character in the material.
文摘The quaternary chalcogenide glass Te9Se72Ge19-xSbx (x = 8, 9, 10, 11, 12) has been prepared by the melt quench technique. The material fragility increases due to decrease in degree of cross linking in glass matrix as the Sb content increases. The heat of atomization decreases due to lower value of heat of atomization of antimony. The glass transition temperature is calculated by Tichy-Ticha and Lankhorst approaches. The glass seems to have high value of glass transition temperature as per theoretical calculations and is monotonically decreasing with increasing Sb content because increasing concentration of Sb reduces the cohesive energy and mean bond energy of the material.