The work deals with cellulose paper filled with nanocellulose and SrAl_(2)O_(4):Eu,Dy oxide phosphor.It was found that both nanocellulose and oxide improve the tensile strength of the composites obtained.The samples w...The work deals with cellulose paper filled with nanocellulose and SrAl_(2)O_(4):Eu,Dy oxide phosphor.It was found that both nanocellulose and oxide improve the tensile strength of the composites obtained.The samples with the oxide demonstrate a long-lasting photoluminescence(PL)under sunlight and ultra-violet(UV)illumination.Room-temperature the PL spectra reveal a wide multicomponent band spreading over all the visible spectral regions.The short-wavelength part of the band is ascribed to the cellulose-related luminescence,while the long-wavelength PL component with maxima near 540 nm corresponds to the luminescence of the SrAl_(2)O_(4):Eu,Dy phosphor.The dependency of the PL intensity on oxide concentration suggests the reabsorption of cellulose emission by the oxide and vice versa.The study of the dielectric properties of composite papers shows the presence of dielectric relaxations at low temperatures(T~−50℃).Similar cellulose materials to those studied can be considered as alternatives for artificial petroleum-based polymers.Low cost,eco-friendliness,biocompatibility,and the simplicity of recycling are among the main advantages of these materials.They are produced from the cellulose which is one of the most abundant renewable materials in nature.The data on the mechanical,dielectric,and optical properties indicate that the papers studied can be used in flexible lighting devices,WLEDs,coating,markers,labels,etc.展开更多
基金financed by the National Research Foundation of Ukraine(Project No.2022.01/0168).
文摘The work deals with cellulose paper filled with nanocellulose and SrAl_(2)O_(4):Eu,Dy oxide phosphor.It was found that both nanocellulose and oxide improve the tensile strength of the composites obtained.The samples with the oxide demonstrate a long-lasting photoluminescence(PL)under sunlight and ultra-violet(UV)illumination.Room-temperature the PL spectra reveal a wide multicomponent band spreading over all the visible spectral regions.The short-wavelength part of the band is ascribed to the cellulose-related luminescence,while the long-wavelength PL component with maxima near 540 nm corresponds to the luminescence of the SrAl_(2)O_(4):Eu,Dy phosphor.The dependency of the PL intensity on oxide concentration suggests the reabsorption of cellulose emission by the oxide and vice versa.The study of the dielectric properties of composite papers shows the presence of dielectric relaxations at low temperatures(T~−50℃).Similar cellulose materials to those studied can be considered as alternatives for artificial petroleum-based polymers.Low cost,eco-friendliness,biocompatibility,and the simplicity of recycling are among the main advantages of these materials.They are produced from the cellulose which is one of the most abundant renewable materials in nature.The data on the mechanical,dielectric,and optical properties indicate that the papers studied can be used in flexible lighting devices,WLEDs,coating,markers,labels,etc.