Recent trends in communication technologies and unmanned aerial vehicles(UAVs)find its application in several areas such as healthcare,surveillance,transportation,etc.Besides,the integration of Internet of things(IoT)...Recent trends in communication technologies and unmanned aerial vehicles(UAVs)find its application in several areas such as healthcare,surveillance,transportation,etc.Besides,the integration of Internet of things(IoT)with cloud computing environment offers several benefits for the UAV communication.At the same time,aerial scene classification is one of the major research areas in UAV-enabledMEC systems.In UAV aerial imagery,efficient image representation is crucial for the purpose of scene classification.The existing scene classification techniques generate mid-level image features with limited representation capabilities that often end up in producing average results.Therefore,the current research work introduces a new DL-enabled aerial scene classificationmodel forUAV-enabledMECsystems.The presented model enables theUAVs to capture aerial imageswhich are then transmitted to MEC for further processing.Next,CapsuleNetwork(CapsNet)-based feature extraction technique is applied to derive a set of useful feature vectors from the aerial image.It is important to have an appropriate hyperparameter tuning strategy,since manual parameter tuning of DL model tend to produce several configuration errors.In order to achieve this and to determine the hyperparameters of CapsNetmodel,Shuffled Shepherd Optimization(SSO)algorithm is implemented.Finally,Backpropagation Neural Network(BPNN)classification model is applied to determine the appropriate class labels of aerial images.The performance of SSO-CapsNet model was validated against two openly-accessible datasets namely,UC Merced(UCM)Land Use dataset andWHU-RS dataset.The proposed SSO-CapsNet model outperformed the existing state-of-the-art methods and achieved maximum accuracy of 0.983,precision of 0.985,recall of 0.982,and F-score of 0.983.展开更多
In recent times,pattern recognition of communication modulation signals has gained significant attention in several application areas such as military,civilian field,etc.It becomes essential to design a safe and robus...In recent times,pattern recognition of communication modulation signals has gained significant attention in several application areas such as military,civilian field,etc.It becomes essential to design a safe and robust feature extraction(FE)approach to efficiently identify the various signal modulation types in a complex platform.Several works have derived new techniques to extract the feature parameters namely instant features,fractal features,and so on.In addition,machine learning(ML)and deep learning(DL)approaches can be commonly employed for modulation signal classification.In this view,this paper designs pattern recognition of communication signal modulation using fractal features with deep neural networks(CSM-FFDNN).The goal of the CSM-FFDNN model is to classify the different types of digitally modulated signals.The proposed CSM-FFDNN model involves two major processes namely FE and classification.The proposed model uses Sevcik Fractal Dimension(SFD)technique to extract the fractal features from the digital modulated signals.Besides,the extracted features are fed into the DNN model for modulation signal classification.To improve the classification performance of the DNN model,a barnacles mating optimizer(BMO)is used for the hyperparameter tuning of the DNN model in such a way that the DNN performance can be raised.A wide range of simulations takes place to highlight the enhanced performance of the CSM-FFDNN model.The experimental outcomes pointed out the superior recognition rate of the CSM-FFDNN model over the recent state of art methods interms of different evaluation parameters.展开更多
文摘Recent trends in communication technologies and unmanned aerial vehicles(UAVs)find its application in several areas such as healthcare,surveillance,transportation,etc.Besides,the integration of Internet of things(IoT)with cloud computing environment offers several benefits for the UAV communication.At the same time,aerial scene classification is one of the major research areas in UAV-enabledMEC systems.In UAV aerial imagery,efficient image representation is crucial for the purpose of scene classification.The existing scene classification techniques generate mid-level image features with limited representation capabilities that often end up in producing average results.Therefore,the current research work introduces a new DL-enabled aerial scene classificationmodel forUAV-enabledMECsystems.The presented model enables theUAVs to capture aerial imageswhich are then transmitted to MEC for further processing.Next,CapsuleNetwork(CapsNet)-based feature extraction technique is applied to derive a set of useful feature vectors from the aerial image.It is important to have an appropriate hyperparameter tuning strategy,since manual parameter tuning of DL model tend to produce several configuration errors.In order to achieve this and to determine the hyperparameters of CapsNetmodel,Shuffled Shepherd Optimization(SSO)algorithm is implemented.Finally,Backpropagation Neural Network(BPNN)classification model is applied to determine the appropriate class labels of aerial images.The performance of SSO-CapsNet model was validated against two openly-accessible datasets namely,UC Merced(UCM)Land Use dataset andWHU-RS dataset.The proposed SSO-CapsNet model outperformed the existing state-of-the-art methods and achieved maximum accuracy of 0.983,precision of 0.985,recall of 0.982,and F-score of 0.983.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(No.2021R1F1A1063319).
文摘In recent times,pattern recognition of communication modulation signals has gained significant attention in several application areas such as military,civilian field,etc.It becomes essential to design a safe and robust feature extraction(FE)approach to efficiently identify the various signal modulation types in a complex platform.Several works have derived new techniques to extract the feature parameters namely instant features,fractal features,and so on.In addition,machine learning(ML)and deep learning(DL)approaches can be commonly employed for modulation signal classification.In this view,this paper designs pattern recognition of communication signal modulation using fractal features with deep neural networks(CSM-FFDNN).The goal of the CSM-FFDNN model is to classify the different types of digitally modulated signals.The proposed CSM-FFDNN model involves two major processes namely FE and classification.The proposed model uses Sevcik Fractal Dimension(SFD)technique to extract the fractal features from the digital modulated signals.Besides,the extracted features are fed into the DNN model for modulation signal classification.To improve the classification performance of the DNN model,a barnacles mating optimizer(BMO)is used for the hyperparameter tuning of the DNN model in such a way that the DNN performance can be raised.A wide range of simulations takes place to highlight the enhanced performance of the CSM-FFDNN model.The experimental outcomes pointed out the superior recognition rate of the CSM-FFDNN model over the recent state of art methods interms of different evaluation parameters.