In this paper,we propose a specific two-layer model consisting of a functionally graded(FG)layer and a piezoelectric semiconductor(PS)layer.Based on the macroscopic theory of PS materials,the effects brought about by ...In this paper,we propose a specific two-layer model consisting of a functionally graded(FG)layer and a piezoelectric semiconductor(PS)layer.Based on the macroscopic theory of PS materials,the effects brought about by the attached FG layer on the piezotronic behaviors of homogeneous n-type PS fibers and PN junctions are investigated.The semi-analytical solutions of the electromechanical fields are obtained by expanding the displacement and carrier concentration variation into power series.Results show that the antisymmetry of the potential and electron concentration distributions in homogeneous n-type PS fibers is destroyed due to the material inhomogeneity of the attached FG layer.In addition,by creating jump discontinuities in the material properties of the FG layer,potential barriers/wells can be produced in the middle of the fiber.Similarly,the potential barrier configuration near the interface of a homogeneous PS PN junction can also be manipulated in this way,which offers a new choice for the design of PN junction based devices.展开更多
基金supported by the National Natural Science Foundation of China(Nos.12061131013,11972276,1211101401,12172171,and 12102183)the State Key Laboratory of Mechanics and Control of Mechanical Structures of Nanjing University of Aeronautics and Astronautics(No.MCMS-E-0520K02)+5 种基金the Fundamental Research Funds for the Central Universities of China(Nos.NE2020002 and NS2019007)the National Natural Science Foundation of China for Creative Research Groups(No.51921003)the Postgraduate Research&Practice Innovation Program of Jiangsu Province of China(No.KYCX210179)the National Natural Science Foundation of Jiangsu Province of China(No.BK20211176)the Local Science and Technology Development Fund Projects Guided by the Central Government of China(No.2021Szvup061)the Jiangsu High-Level Innovative and Entrepreneurial Talents Introduction Plan(Shuangchuang Doctor Program,No.JSSCBS20210166)。
文摘In this paper,we propose a specific two-layer model consisting of a functionally graded(FG)layer and a piezoelectric semiconductor(PS)layer.Based on the macroscopic theory of PS materials,the effects brought about by the attached FG layer on the piezotronic behaviors of homogeneous n-type PS fibers and PN junctions are investigated.The semi-analytical solutions of the electromechanical fields are obtained by expanding the displacement and carrier concentration variation into power series.Results show that the antisymmetry of the potential and electron concentration distributions in homogeneous n-type PS fibers is destroyed due to the material inhomogeneity of the attached FG layer.In addition,by creating jump discontinuities in the material properties of the FG layer,potential barriers/wells can be produced in the middle of the fiber.Similarly,the potential barrier configuration near the interface of a homogeneous PS PN junction can also be manipulated in this way,which offers a new choice for the design of PN junction based devices.