期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Advanced Persistent Threat Detection and Mitigation Using Machine Learning Model
1
作者 u.sakthivelu C.N.S.Vinoth Kumar 《Intelligent Automation & Soft Computing》 SCIE 2023年第6期3691-3707,共17页
The detection of cyber threats has recently been a crucial research domain as the internet and data drive people’s livelihood.Several cyber-attacks lead to the compromise of data security.The proposed system offers c... The detection of cyber threats has recently been a crucial research domain as the internet and data drive people’s livelihood.Several cyber-attacks lead to the compromise of data security.The proposed system offers complete data protection from Advanced Persistent Threat(APT)attacks with attack detection and defence mechanisms.The modified lateral movement detection algorithm detects the APT attacks,while the defence is achieved by the Dynamic Deception system that makes use of the belief update algorithm.Before termination,every cyber-attack undergoes multiple stages,with the most prominent stage being Lateral Movement(LM).The LM uses a Remote Desktop protocol(RDP)technique to authenticate the unauthorised host leaving footprints on the network and host logs.An anomaly-based approach leveraging the RDP event logs on Windows is used for detecting the evidence of LM.After extracting various feature sets from the logs,the RDP sessions are classified using machine-learning techniques with high recall and precision.It is found that the AdaBoost classifier offers better accuracy,precision,F1 score and recall recording 99.9%,99.9%,0.99 and 0.98%.Further,a dynamic deception process is used as a defence mechanism to mitigateAPTattacks.A hybrid encryption communication,dynamic(Internet Protocol)IP address generation,timing selection and policy allocation are established based on mathematical models.A belief update algorithm controls the defender’s action.The performance of the proposed system is compared with the state-of-the-art models. 展开更多
关键词 Advanced persistent threats lateral movement detection dynamic deception remote desktop protocol Internet Protocol attack detection
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部