An rGO−like carbon compound has been synthesized from biomass,i.e.,old coconut shell,by a carbonization process followed by heating at 400°C for 5 h.The nitrogen doping was achieved by adding the urea(CH4N2O)and ...An rGO−like carbon compound has been synthesized from biomass,i.e.,old coconut shell,by a carbonization process followed by heating at 400°C for 5 h.The nitrogen doping was achieved by adding the urea(CH4N2O)and stirring at 70°C for 14 h.The morphology and structure of the rGO-like carbon were investigated by electron microscopies and Raman spectroscopy.The presence of C-N functional groups was analyzed by Fourier transform infrared and synchrotron X-ray photoemission spectroscopy,while the particle and the specific capacitance were measured by particle sizer and cyclic voltammetry.The highest specific capacitance of 72.78 F/g is achieved by the sample with 20%urea,having the smallest particles size and the largest surface area.The corresponding sample has shown to be constituted by the appropriate amount of C–N pyrrolic and pyridinic defects.展开更多
A simple,highly reproducible,and environmentally friendly method is a considered approach in generating renewable energy materials.Here,hydrogenated amorphous carbon(a-C)films have been successfully prepared from palm...A simple,highly reproducible,and environmentally friendly method is a considered approach in generating renewable energy materials.Here,hydrogenated amorphous carbon(a-C)films have been successfully prepared from palmyra liquid sugar,employing spin-coating and spraying methods.Compared with the former method,the latter shows a significance in producing a better homogeneity in particle size and film thickness.The obtained films have a thickness of approximately 1000 to 100 nm and contain an sp^(2) hexagonal structure(~70%)and sp^(3) tetrahedral configuration(~30%)of carbons.The introduction of boron(B)and nitrogen(N)as dopants has created the local structural modification of bonding,inducing a slight change of electrical conductivity,electronic energy bandgap,and optical transparency near-infrared region.The obtained α-C film features a“green”semiconducting material.展开更多
An a-C/a-C:N junction,which used palmyra sugar as the carbon source and ammonium hydroxide(NH4OH)as the dopant source,was successfully deposited on the ITO glass substrate using the nano-spraying method.The current-vo...An a-C/a-C:N junction,which used palmyra sugar as the carbon source and ammonium hydroxide(NH4OH)as the dopant source,was successfully deposited on the ITO glass substrate using the nano-spraying method.The current-voltage relationship of the junction was found to be a Schottky-like contact,and therefore the junction shows the characteristic rectifiers.This means the a-C and a-C:N are semiconductors with different types of conduction.Moreover,the samples showed an increase in current and voltage value when exposed to visible light(bright state)compared to the dark condition,thereby,indicating the creation of electron-hole pairs during the exposure.It was also discovered that the relationship between current and voltage for the a-C/a-C:N junction sample formed a curve that satisfies the rule of the photovoltaic effect when exposed to visible light from a light bulb.The exposure of this sample to direct sunlight at AM 1.5 conditions produced a curve that meets the rules for the emergence of the photovoltaic effect with higher characteristics for the current-voltage relationship.Thus,the a-C/a-C:N junction sample is a solar cell successfully fabricated using a sample method and has a maximum efficiency of 0.0013%.展开更多
基金supported by“Hibah Penelitian Dasar Kompetitif Nasional”,Ministry of Education,Culture,Research and Technology,Indonesia,2021–2022(D).The use of the synchrotron XPES facility at SLRI(Public Organization),Thailand,and some experimental facilities at UNIMAP and UPM,Malaysia,would also be appreciated.
文摘An rGO−like carbon compound has been synthesized from biomass,i.e.,old coconut shell,by a carbonization process followed by heating at 400°C for 5 h.The nitrogen doping was achieved by adding the urea(CH4N2O)and stirring at 70°C for 14 h.The morphology and structure of the rGO-like carbon were investigated by electron microscopies and Raman spectroscopy.The presence of C-N functional groups was analyzed by Fourier transform infrared and synchrotron X-ray photoemission spectroscopy,while the particle and the specific capacitance were measured by particle sizer and cyclic voltammetry.The highest specific capacitance of 72.78 F/g is achieved by the sample with 20%urea,having the smallest particles size and the largest surface area.The corresponding sample has shown to be constituted by the appropriate amount of C–N pyrrolic and pyridinic defects.
基金One of us(BP)would like to thank the Ministry of Finance and the Ministry of Research,Technology,and Higher Education for providing the LPDP BUDI-DN scholarship.The use of the synchrotron PES facility at SLRI(Public Organization),Thailand,would also be appreciated.This work is partially supported by Institut Teknologi Sepuluh Nopember,under contract No.863/PKS/ITS/2020.
文摘A simple,highly reproducible,and environmentally friendly method is a considered approach in generating renewable energy materials.Here,hydrogenated amorphous carbon(a-C)films have been successfully prepared from palmyra liquid sugar,employing spin-coating and spraying methods.Compared with the former method,the latter shows a significance in producing a better homogeneity in particle size and film thickness.The obtained films have a thickness of approximately 1000 to 100 nm and contain an sp^(2) hexagonal structure(~70%)and sp^(3) tetrahedral configuration(~30%)of carbons.The introduction of boron(B)and nitrogen(N)as dopants has created the local structural modification of bonding,inducing a slight change of electrical conductivity,electronic energy bandgap,and optical transparency near-infrared region.The obtained α-C film features a“green”semiconducting material.
基金funded by the University of Muhammadiyah Malang through a doctoral scientific work development program and also by theMinistry of Finance of Indonesia through the LPDP BUDI-DN scholarship(BP),and National Competitive Fundamental Research Grant(Hibah Penelitian Dasar),Kemendikbudristek,2021–2022(D).
文摘An a-C/a-C:N junction,which used palmyra sugar as the carbon source and ammonium hydroxide(NH4OH)as the dopant source,was successfully deposited on the ITO glass substrate using the nano-spraying method.The current-voltage relationship of the junction was found to be a Schottky-like contact,and therefore the junction shows the characteristic rectifiers.This means the a-C and a-C:N are semiconductors with different types of conduction.Moreover,the samples showed an increase in current and voltage value when exposed to visible light(bright state)compared to the dark condition,thereby,indicating the creation of electron-hole pairs during the exposure.It was also discovered that the relationship between current and voltage for the a-C/a-C:N junction sample formed a curve that satisfies the rule of the photovoltaic effect when exposed to visible light from a light bulb.The exposure of this sample to direct sunlight at AM 1.5 conditions produced a curve that meets the rules for the emergence of the photovoltaic effect with higher characteristics for the current-voltage relationship.Thus,the a-C/a-C:N junction sample is a solar cell successfully fabricated using a sample method and has a maximum efficiency of 0.0013%.