To improve the efficiency and accuracy of path planning for fan inspection tasks in thermal power plants,this paper proposes an intelligent inspection robot path planning scheme based on an improved A^(*)algorithm.The...To improve the efficiency and accuracy of path planning for fan inspection tasks in thermal power plants,this paper proposes an intelligent inspection robot path planning scheme based on an improved A^(*)algorithm.The inspection robot utilizes multiple sensors to monitor key parameters of the fans,such as vibration,noise,and bearing temperature,and upload the data to the monitoring center.The robot’s inspection path employs the improved A^(*)algorithm,incorporating obstacle penalty terms,path reconstruction,and smoothing optimization techniques,thereby achieving optimal path planning for the inspection robot in complex environments.Simulation results demonstrate that the improved A^(*)algorithm significantly outperforms the traditional A^(*)algorithm in terms of total path distance,smoothness,and detour rate,effectively improving the execution efficiency of inspection tasks.展开更多
To meet the demand for intelligent and unmanned development in thermal power plants,an intelligent inspection system has been designed.This system efficiently performs inspection tasks and monitors the operational par...To meet the demand for intelligent and unmanned development in thermal power plants,an intelligent inspection system has been designed.This system efficiently performs inspection tasks and monitors the operational parameters of key equipment in real-time.The collected data is uploaded to the monitoring center,allowing operation and maintenance personnel to access equipment information promptly.Data analysis is used to provide fault warning and diagnosis for critical equipment.The system employs the Pure Pursuit algorithm,which effectively avoids obstacles and ensures path continuity and stability.Simulation results show that the Pure Pursuit algorithm significantly improves the navigation accuracy and task efficiency of the inspection robot,ensuring the reliability of thermal power plant inspections.展开更多
文摘To improve the efficiency and accuracy of path planning for fan inspection tasks in thermal power plants,this paper proposes an intelligent inspection robot path planning scheme based on an improved A^(*)algorithm.The inspection robot utilizes multiple sensors to monitor key parameters of the fans,such as vibration,noise,and bearing temperature,and upload the data to the monitoring center.The robot’s inspection path employs the improved A^(*)algorithm,incorporating obstacle penalty terms,path reconstruction,and smoothing optimization techniques,thereby achieving optimal path planning for the inspection robot in complex environments.Simulation results demonstrate that the improved A^(*)algorithm significantly outperforms the traditional A^(*)algorithm in terms of total path distance,smoothness,and detour rate,effectively improving the execution efficiency of inspection tasks.
文摘To meet the demand for intelligent and unmanned development in thermal power plants,an intelligent inspection system has been designed.This system efficiently performs inspection tasks and monitors the operational parameters of key equipment in real-time.The collected data is uploaded to the monitoring center,allowing operation and maintenance personnel to access equipment information promptly.Data analysis is used to provide fault warning and diagnosis for critical equipment.The system employs the Pure Pursuit algorithm,which effectively avoids obstacles and ensures path continuity and stability.Simulation results show that the Pure Pursuit algorithm significantly improves the navigation accuracy and task efficiency of the inspection robot,ensuring the reliability of thermal power plant inspections.