Metal-organic frameworks(MOFs)are porous materials formed by the coordination of organic and inorganic components through coordination bonds.MOF-derived materials preserve the large surface area and inherent porosity ...Metal-organic frameworks(MOFs)are porous materials formed by the coordination of organic and inorganic components through coordination bonds.MOF-derived materials preserve the large surface area and inherent porosity of their parent structures,while simultaneously offering enhanced electrical conductivity and more efficient charge transport.Studies have shown that integrating electrospinning with MOFs into continuous nanofiber networks can effectively address issues such as MOF structural collapse,low conductivity,and leaching of active sites.Moreover,the electrospinning technique enables fine-tuning of the product’s morphology,architecture,and chemical composition,thereby unlocking new possibilities for advancing high-performance ZABs.This review provides a systematic overview of recent advances in non-precious metal electrocatalysts derived from electrospun-MOF composites and examines the unique advantages of combining electrospinning with MOF precursors in the design of oxygen electrocatalysts.It also investigates the morphological regulation of various fiber structures,including porous,hollow,core-shell,and beaded structures,as well as their influence on the catalytic performance.Finally,the performance enhancement strategies of electrospun-MOF catalyst materials are examined,and the development prospects along with future research directions related to oxygen electrocatalysts based on electrospun nanofibers are emphasized.This thorough review aims to offer meaningful insights and practical guidance for advancing the understanding,design,and fabrication of next-generation devices for energy conversion and storage.展开更多
Supercapacitors known as typical electrochemical capacitors have been considered as one of the most promising candidates of energy storage systems owing to their advantages such as high-power density,long life span an...Supercapacitors known as typical electrochemical capacitors have been considered as one of the most promising candidates of energy storage systems owing to their advantages such as high-power density,long life span and lower production cost.The electrode materials play a crucial role on properties of supercapacitors.Hence,many researches have been focused on the development of novel electrode materials for high-performance supercapacitors.NiCo_2O_4as supercapacitor electrode material has drawn more and more attentions in recent years due to its outstanding advantages,such as high theoretical capacity,low cost,natural abundance and easy of synthesis.However,the NiCo_2O_4always suffer from severe capacity deterioration because of the low electrical conductivity and small surface area.Hence,it is necessary to systematically and comprehensively summarize the progress in understanding and modifying NiCo_2O_4-based materials from various aspects.In this review,the structure and synthesis method of NiCo_2O_4-based materials are discussed in detail.And then,the major goal of this review is to highlight new progress in using proposed strategies to improve the cycling stability and rate capacity of NiCo_2O_4-based materials,including synthesis,control of special morphologies and design of composite materials.Finally,an insight into the future research and development of Ni Co_2O_4-based materials for supercapacitors is prospected.展开更多
Mesoporous NiCo_2O_4@MnO_2 nanoneedle arrays as electrode materials for supercapacitor grown on a conductive nickel foam were prepared by a facile hydrothermal route. The interconnected mesoporous structure of the NiC...Mesoporous NiCo_2O_4@MnO_2 nanoneedle arrays as electrode materials for supercapacitor grown on a conductive nickel foam were prepared by a facile hydrothermal route. The interconnected mesoporous structure of the NiCo_2O_4 nanoneedle arrays provides a large specific surface area for charge storage.The electrochemically active MnO_2 nanoparticles covered on the surface of NiCo_2O_4 nanoneedle result in a favorable synergistic storage effect because of charge redistribution at the NiCo_2O_4|MnO_2 interface,which reduces the interfacial polarization and facilitates ion diffusion. The initial specific capacitance of NiCo_2O_4@MnO_2(S2) is 1001 F g^(-1) at current density of 15 A g^(-1). The capacity retention of S2 is about87.4% after 4000 cycles, and the specific capacitance of S2 electrode only decreases from 1001 F g^(-1) to736 F g^(-1) even after 10,000 cycles. The first-principles calculations show that a chemical bonding between the NiCo_2O_4 and MnO_2 is not only helpful for stabilizing the composites but also leads to a charge redistribution at the interface, which may lead to a smaller interfacial polarization and thus beneficial for the interfacial capacity. The excellent electrochemical performance of NiCo_2O_4@MnO_2 composites(S2)can be ascribed to the high surface area, unique architecture, MnO_2 nanoparticle modification, reduced charge transfer resistance and stable interface between NiCo_2O_4 and MnO_2. The simple material synthesis and architectural design strategy provides new insights in opportunities to exhibit promising potential for practical application in energy storage.展开更多
Transition metal oxides(TMO) bring a novel direction for the development of energy store materials due to their excellent stability. They not only have high capacity and good cycle performance, but also are cheap and ...Transition metal oxides(TMO) bring a novel direction for the development of energy store materials due to their excellent stability. They not only have high capacity and good cycle performance, but also are cheap and easily available. Zinc oxide(Zn O) as an important part of TMO have gradually attracted attention in the research of electrochemistry. Zn O, as a metal semiconductor with the advantages of wide band gap, possesses high ion migration rate, good chemical stability, simple preparation and low cost, and is widely used in various fields. However, poor conductivity, low permittivity and quick capacity decays quickly impede the commercial application of these electrodes. In recent years, in order to improve the structural stability, ion diffusion and conductivity of zinc oxides-based anodes, various strategies have been raised, such as structural design, surface modification and composition control. In this paper, the recent advances of zinc oxides-based materials for batteries and hybrid supercapacitors(SCs) were introduced. We comprehensively reviewed the prepared process, reaction mechanism and electrochemical performance and discussed the shortcoming of zinc oxides-based nanomaterials. In particular, several insights toward the future research development, practical applications and commercialization of energy storage devices are also proposed for improving the performance of zinc oxides-based materials.展开更多
The Li_(2)ZnTi_(3)O_(8)@Li AlO_(2)was synthesized by a facile high-temperature solid-state route.The LiAlO_(2)modification does not alter the morphology and particle size of Li_(2)Zn Ti_(3)O_(8)(LZTO).The LiAlO_(2)mod...The Li_(2)ZnTi_(3)O_(8)@Li AlO_(2)was synthesized by a facile high-temperature solid-state route.The LiAlO_(2)modification does not alter the morphology and particle size of Li_(2)Zn Ti_(3)O_(8)(LZTO).The LiAlO_(2)modification improves the structure stability,intercalation/deintercalation reversibility of lithium-ions,and electrochemical reaction activity of Li_(2)Zn Ti_(3)O_(8),and promotes the transfer of lithium ions.Benefited from the unique component,Li_(2)Zn Ti_(3)O_(8)@Li AlO_(2)(8wt%) shows a good rate performance with charge capacities of 203.9,194.8,187.4,180.6,and177.1 mAh·g^(-1)at 0.5,1,2,3,and 5 C,respectively.Nevertheless,pure LZTO only delivers charge capacities of 134.5,109.7,89.4,79.9,and 72.9 mAh·g^(-1)at the corresponding rates.Even at large charge–discharge rate,the Li_(2)Zn Ti_(3)O_(8)@Li AlO_(2)(8wt%) composite indicates a good cycle performance with a high reversible charge/discharge capacity of 263.5/265.8 mAh·g^(-1)at 5 C after 150 cycles.The introduction of LiAlO_(2)on the surface of Li_(2)Zn Ti_(3)O_(8)enhances electronic conductivity of the composite,resulting in the good electrochemical performance of Li_(2)Zn Ti_(3)O_(8)@Li AlO_(2)composite.Li_(2)Zn Ti_(3)O_(8)@LiAlO_(2)(8wt%) composite shows a good potential as an anode material for the next generation of high-performance Li-ion batteries.展开更多
Spinel LiMn2O4 and F, Al-doped spinel LiAl0.05Mn1.95O3.58F0.02 have been synthesized by a soft chemistry method using adipic acid as the chelating agent. The synthesized spine/materials were characterized by different...Spinel LiMn2O4 and F, Al-doped spinel LiAl0.05Mn1.95O3.58F0.02 have been synthesized by a soft chemistry method using adipic acid as the chelating agent. The synthesized spine/materials were characterized by differential thermal analysis (DTA) and thermogravimetery (TG), X-ray diffraction (XRD), scanning electron microscopy (SEM), cyclic voltammetry (CV), and chargedischarge testing. The results indicate that all the samples have high phase purity, and fluorine is important in controlling the morphology; the doped aluminum enhances the stability of spinel LiMn2O4. The charge-discharge tests indicate that LiAl0.05Mn1.95O4 has high capacity retention, which is 92.60% of the initial after 50 cycles. It is found that the novel compound LiAl0.05Mn1.95O3.98F0.02 with smaller particles can offer much higher capacity, whose initial discharge capacity is 126.5 mAh·g^-1. The cyclic voltammetric experiments disclose the enhanced reversibility of the F, Al^3+-modified spinel as compared with the undoped spinel.展开更多
Na_(3)V_(2)(PO_(4))_(3)(NVP)has emerged as one of the most promising cathode materials for sodium-ion batteries(SIBs)owing to its high ionic conductivity and high theoretical energy density.However,the inherent inferi...Na_(3)V_(2)(PO_(4))_(3)(NVP)has emerged as one of the most promising cathode materials for sodium-ion batteries(SIBs)owing to its high ionic conductivity and high theoretical energy density.However,the inherent inferior conductivity of NVP prevents its achievement of the theoretical energy density even at low rates,thereby limiting the practical application of NVP in massive energy storage.Here,Al^(3+)-doped Na_(3)V_(2−x)Al_(x)(PO_(4))_(3)(NVAP)materials derived from aluminum terephthalate(MIL-53(Al))were synthesized for the first time,and the effects of Al3+doping on the structural and electrochemical performances of NVP were investigated.The NVAP mate-rials,particularly Na_(3)V_(1.97)Al_(0.03)(PO_(4))_(3)(NVAP2),exhibited superior cycling performance and rate capabilities compared with the NVP material.NVAP2 exhibited a good rate capability,with high reversible discharge capacities of 111.6,110.3,108.9,106.6,103.4,96.9,and 88.7 mAh g^(−1)at 0.1,0.2,0.5,1,2,5,and 10C rates,respectively.Moreover,the NVAP2 material exhibited a prominent initial discharge capacity of 102.3 mAh g^(−1)and maintained an excellent capacity retention rate of 92.0%after 2000 cycles at 10C,indicating significant cycling stability.Overall,this work provides an efficient technique for enhancing the electrochemical proper-ties of cathode materials with a sodium superionic conductor structure for SIBs.展开更多
文摘Metal-organic frameworks(MOFs)are porous materials formed by the coordination of organic and inorganic components through coordination bonds.MOF-derived materials preserve the large surface area and inherent porosity of their parent structures,while simultaneously offering enhanced electrical conductivity and more efficient charge transport.Studies have shown that integrating electrospinning with MOFs into continuous nanofiber networks can effectively address issues such as MOF structural collapse,low conductivity,and leaching of active sites.Moreover,the electrospinning technique enables fine-tuning of the product’s morphology,architecture,and chemical composition,thereby unlocking new possibilities for advancing high-performance ZABs.This review provides a systematic overview of recent advances in non-precious metal electrocatalysts derived from electrospun-MOF composites and examines the unique advantages of combining electrospinning with MOF precursors in the design of oxygen electrocatalysts.It also investigates the morphological regulation of various fiber structures,including porous,hollow,core-shell,and beaded structures,as well as their influence on the catalytic performance.Finally,the performance enhancement strategies of electrospun-MOF catalyst materials are examined,and the development prospects along with future research directions related to oxygen electrocatalysts based on electrospun nanofibers are emphasized.This thorough review aims to offer meaningful insights and practical guidance for advancing the understanding,design,and fabrication of next-generation devices for energy conversion and storage.
基金financially supported by the National Natural Science Foundation of China (nos. 51774002 and 51672156)Anhui Provincial Science Fund for Excellent Young Scholars (no. gxyqZD2016066)+2 种基金the National Key Basic Research Program of China (2014CB932400)Guangdong special support program (2015TQ01N401)Shenzhen Technical Plan Project (KQJSCX20160226191136)
文摘Supercapacitors known as typical electrochemical capacitors have been considered as one of the most promising candidates of energy storage systems owing to their advantages such as high-power density,long life span and lower production cost.The electrode materials play a crucial role on properties of supercapacitors.Hence,many researches have been focused on the development of novel electrode materials for high-performance supercapacitors.NiCo_2O_4as supercapacitor electrode material has drawn more and more attentions in recent years due to its outstanding advantages,such as high theoretical capacity,low cost,natural abundance and easy of synthesis.However,the NiCo_2O_4always suffer from severe capacity deterioration because of the low electrical conductivity and small surface area.Hence,it is necessary to systematically and comprehensively summarize the progress in understanding and modifying NiCo_2O_4-based materials from various aspects.In this review,the structure and synthesis method of NiCo_2O_4-based materials are discussed in detail.And then,the major goal of this review is to highlight new progress in using proposed strategies to improve the cycling stability and rate capacity of NiCo_2O_4-based materials,including synthesis,control of special morphologies and design of composite materials.Finally,an insight into the future research and development of Ni Co_2O_4-based materials for supercapacitors is prospected.
基金financially supported by the National Natural Science Foundation of China (nos. 51774002 and 21773060)Anhui Provincial Science Fund for Excellent Young Scholars (no. gxyqZD2016066)
文摘Mesoporous NiCo_2O_4@MnO_2 nanoneedle arrays as electrode materials for supercapacitor grown on a conductive nickel foam were prepared by a facile hydrothermal route. The interconnected mesoporous structure of the NiCo_2O_4 nanoneedle arrays provides a large specific surface area for charge storage.The electrochemically active MnO_2 nanoparticles covered on the surface of NiCo_2O_4 nanoneedle result in a favorable synergistic storage effect because of charge redistribution at the NiCo_2O_4|MnO_2 interface,which reduces the interfacial polarization and facilitates ion diffusion. The initial specific capacitance of NiCo_2O_4@MnO_2(S2) is 1001 F g^(-1) at current density of 15 A g^(-1). The capacity retention of S2 is about87.4% after 4000 cycles, and the specific capacitance of S2 electrode only decreases from 1001 F g^(-1) to736 F g^(-1) even after 10,000 cycles. The first-principles calculations show that a chemical bonding between the NiCo_2O_4 and MnO_2 is not only helpful for stabilizing the composites but also leads to a charge redistribution at the interface, which may lead to a smaller interfacial polarization and thus beneficial for the interfacial capacity. The excellent electrochemical performance of NiCo_2O_4@MnO_2 composites(S2)can be ascribed to the high surface area, unique architecture, MnO_2 nanoparticle modification, reduced charge transfer resistance and stable interface between NiCo_2O_4 and MnO_2. The simple material synthesis and architectural design strategy provides new insights in opportunities to exhibit promising potential for practical application in energy storage.
基金financially supported by the National Natural Science Foundation of China (Nos.U1960107 and 51774002)the “333 Talent Project of Hebei Province (No.A202005018)the Fundamental Research Funds for the Central Universities (Nos.N2123034 and N2123001)。
文摘Transition metal oxides(TMO) bring a novel direction for the development of energy store materials due to their excellent stability. They not only have high capacity and good cycle performance, but also are cheap and easily available. Zinc oxide(Zn O) as an important part of TMO have gradually attracted attention in the research of electrochemistry. Zn O, as a metal semiconductor with the advantages of wide band gap, possesses high ion migration rate, good chemical stability, simple preparation and low cost, and is widely used in various fields. However, poor conductivity, low permittivity and quick capacity decays quickly impede the commercial application of these electrodes. In recent years, in order to improve the structural stability, ion diffusion and conductivity of zinc oxides-based anodes, various strategies have been raised, such as structural design, surface modification and composition control. In this paper, the recent advances of zinc oxides-based materials for batteries and hybrid supercapacitors(SCs) were introduced. We comprehensively reviewed the prepared process, reaction mechanism and electrochemical performance and discussed the shortcoming of zinc oxides-based nanomaterials. In particular, several insights toward the future research development, practical applications and commercialization of energy storage devices are also proposed for improving the performance of zinc oxides-based materials.
基金supported by the National Natural Science Foundation of China (No.U1960107)the“333”Talent Project of Hebei Province,China (No.A202005018)+1 种基金the Fundamental Research Funds for the Central Universities(No.N2123001)the Performance Subsidy Fund for Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province,China (No.22567627H)。
文摘The Li_(2)ZnTi_(3)O_(8)@Li AlO_(2)was synthesized by a facile high-temperature solid-state route.The LiAlO_(2)modification does not alter the morphology and particle size of Li_(2)Zn Ti_(3)O_(8)(LZTO).The LiAlO_(2)modification improves the structure stability,intercalation/deintercalation reversibility of lithium-ions,and electrochemical reaction activity of Li_(2)Zn Ti_(3)O_(8),and promotes the transfer of lithium ions.Benefited from the unique component,Li_(2)Zn Ti_(3)O_(8)@Li AlO_(2)(8wt%) shows a good rate performance with charge capacities of 203.9,194.8,187.4,180.6,and177.1 mAh·g^(-1)at 0.5,1,2,3,and 5 C,respectively.Nevertheless,pure LZTO only delivers charge capacities of 134.5,109.7,89.4,79.9,and 72.9 mAh·g^(-1)at the corresponding rates.Even at large charge–discharge rate,the Li_(2)Zn Ti_(3)O_(8)@Li AlO_(2)(8wt%) composite indicates a good cycle performance with a high reversible charge/discharge capacity of 263.5/265.8 mAh·g^(-1)at 5 C after 150 cycles.The introduction of LiAlO_(2)on the surface of Li_(2)Zn Ti_(3)O_(8)enhances electronic conductivity of the composite,resulting in the good electrochemical performance of Li_(2)Zn Ti_(3)O_(8)@Li AlO_(2)composite.Li_(2)Zn Ti_(3)O_(8)@LiAlO_(2)(8wt%) composite shows a good potential as an anode material for the next generation of high-performance Li-ion batteries.
文摘Spinel LiMn2O4 and F, Al-doped spinel LiAl0.05Mn1.95O3.58F0.02 have been synthesized by a soft chemistry method using adipic acid as the chelating agent. The synthesized spine/materials were characterized by differential thermal analysis (DTA) and thermogravimetery (TG), X-ray diffraction (XRD), scanning electron microscopy (SEM), cyclic voltammetry (CV), and chargedischarge testing. The results indicate that all the samples have high phase purity, and fluorine is important in controlling the morphology; the doped aluminum enhances the stability of spinel LiMn2O4. The charge-discharge tests indicate that LiAl0.05Mn1.95O4 has high capacity retention, which is 92.60% of the initial after 50 cycles. It is found that the novel compound LiAl0.05Mn1.95O3.98F0.02 with smaller particles can offer much higher capacity, whose initial discharge capacity is 126.5 mAh·g^-1. The cyclic voltammetric experiments disclose the enhanced reversibility of the F, Al^3+-modified spinel as compared with the undoped spinel.
文摘Na_(3)V_(2)(PO_(4))_(3)(NVP)has emerged as one of the most promising cathode materials for sodium-ion batteries(SIBs)owing to its high ionic conductivity and high theoretical energy density.However,the inherent inferior conductivity of NVP prevents its achievement of the theoretical energy density even at low rates,thereby limiting the practical application of NVP in massive energy storage.Here,Al^(3+)-doped Na_(3)V_(2−x)Al_(x)(PO_(4))_(3)(NVAP)materials derived from aluminum terephthalate(MIL-53(Al))were synthesized for the first time,and the effects of Al3+doping on the structural and electrochemical performances of NVP were investigated.The NVAP mate-rials,particularly Na_(3)V_(1.97)Al_(0.03)(PO_(4))_(3)(NVAP2),exhibited superior cycling performance and rate capabilities compared with the NVP material.NVAP2 exhibited a good rate capability,with high reversible discharge capacities of 111.6,110.3,108.9,106.6,103.4,96.9,and 88.7 mAh g^(−1)at 0.1,0.2,0.5,1,2,5,and 10C rates,respectively.Moreover,the NVAP2 material exhibited a prominent initial discharge capacity of 102.3 mAh g^(−1)and maintained an excellent capacity retention rate of 92.0%after 2000 cycles at 10C,indicating significant cycling stability.Overall,this work provides an efficient technique for enhancing the electrochemical proper-ties of cathode materials with a sodium superionic conductor structure for SIBs.