The quest for realizing novel fundamental physical effects and practical applications in ambient conditions has led to tremendous interest in microcavity exciton polaritons working in the strong coupling regime at roo...The quest for realizing novel fundamental physical effects and practical applications in ambient conditions has led to tremendous interest in microcavity exciton polaritons working in the strong coupling regime at room temperature.In the past few decades,a wide range of novel semiconductor systems supporting robust exciton polaritons have emerged,which has led to the realization of various fascinating phenomena and practical applications.This paper aims to review recent theoretical and experimental developments of exciton polaritons operating at room temperature,and includes a comprehensive theoretical background,descriptions of intriguing phenomena observed in various physical systems,as well as accounts of optoelectronic applications.Specifically,an in-depth review of physical systems achieving room temperature exciton polaritons will be presented,including the early development of ZnO and GaN microcavities and other emerging systems such as organics,halide perovskite semiconductors,carbon nanotubes,and transition metal dichalcogenides.Finally,a perspective of outlooking future developments will be elaborated.展开更多
基金Q.Xiong gratefully acknowledges funding support from the National Natural Science Foundation of China(12020101003)the State Key Laboratory of Low-Dimensional Quantum Physics at Tsinghua University.S.Ghosh gratefully acknowledges the support from the Excellent Young Scientists Fund Program(Overseas)of the National Natural Science Foundation of China.R.Su and T.Liew gratefully acknowledge the funding support from Nanyang Technological University via a start-up grant and the Singapore Ministry of Education via the AcRF Tier 3 Programme“Geometrical Quantum Materials”(MOE2018-T3-1-002).
文摘The quest for realizing novel fundamental physical effects and practical applications in ambient conditions has led to tremendous interest in microcavity exciton polaritons working in the strong coupling regime at room temperature.In the past few decades,a wide range of novel semiconductor systems supporting robust exciton polaritons have emerged,which has led to the realization of various fascinating phenomena and practical applications.This paper aims to review recent theoretical and experimental developments of exciton polaritons operating at room temperature,and includes a comprehensive theoretical background,descriptions of intriguing phenomena observed in various physical systems,as well as accounts of optoelectronic applications.Specifically,an in-depth review of physical systems achieving room temperature exciton polaritons will be presented,including the early development of ZnO and GaN microcavities and other emerging systems such as organics,halide perovskite semiconductors,carbon nanotubes,and transition metal dichalcogenides.Finally,a perspective of outlooking future developments will be elaborated.