Atmospheric InfraRed Sounder (AIRS) measurements are a valuable supplement to current observational data,especially over the oceans where conventional data are sparse.In this study,two types of AIRS-retrieved temper...Atmospheric InfraRed Sounder (AIRS) measurements are a valuable supplement to current observational data,especially over the oceans where conventional data are sparse.In this study,two types of AIRS-retrieved temperature and moisture profiles,the AIRS Science Team product (SciSup) and the single field-of-view (SFOV) research product,were evaluated with European Centre for Medium-Range Weather Forecasts (ECMWF) analysis data over the Atlantic Ocean during Hurricane Ike (2008) and Hurricane Irene (2011).The evaluation results showed that both types of AIRS profiles agreed well with the ECMWF analysis,especially between 200 hPa and 700 hPa.The average standard deviation of both temperature profiles was approximately 1 K under 200 hPa,where the mean AIRS temperature profile from the AIRS SciSup retrievals was slightly colder than that from the AIRS SFOV retrievals.The mean SciSup moisture profile was slightly drier than that from the SFOV in the mid troposphere.A series of data assimilation and forecast experiments was then conducted with the Advanced Research version of the Weather Research and Forecasting (WRF) model and its three-dimensional variational (3DVAR) data assimilation system for hurricanes Ike and Irene.The results showed an improvement in the hurricane track due to the assimilation of AIRS clear-sky temperature profiles in the hurricane environment.In terms of total precipitable water and rainfall forecasts,the hurricane moisture environment was found to be affected by the AIRS sounding assimilation.Meanwhile,improving hurricane intensity forecasts through assimilating AIRS profiles remains a challenge for further study.展开更多
Accurate atmospheric temperature and moisture information with high temporal/spatial resolutions are two of the key parameters needed in regional numerical weather prediction(NWP) models to reliably predict high-impac...Accurate atmospheric temperature and moisture information with high temporal/spatial resolutions are two of the key parameters needed in regional numerical weather prediction(NWP) models to reliably predict high-impact weather events such as local severe storms(LSSs). High spectral resolution or hyperspectral infrared(HIR) sounders from geostationary orbit(GEO) provide an unprecedented source of near time-continuous, three-dimensional information on the dynamic and thermodynamic atmospheric fields—an important benefit for nowcasting and NWP-based forecasting. In order to demonstrate the value of GEO HIR sounder radiances on LSS forecasts, a quick regional OSSE(Observing System Simulation Experiment)framework has been developed, including high-resolution nature run generation, synthetic observation simulation and validation, and impact study on LSS forecasts. Results show that, on top of the existing LEO(low earth orbit) sounders, a GEO HIR sounder may provide value-added impact [a reduction of 3.56% in normalized root-mean-square difference(RMSD)] on LSS forecasts due to large spatial coverage and high temporal resolution, even though the data are assimilated every 6 h with a thinning of 60 km. Additionally, more frequent assimilations and smaller thinning distances allow more observations to be assimilated, and may further increase the positive impact from a GEO HIR sounder. On the other hand, with denser and more frequent observations assimilated, it becomes more difficult to handle the spatial error correlation in observations and gravity waves due to the limitations of current assimilation and forecast systems(such as a static background error covariance). The peak reduction of 4.6% in normalized RMSD is found when observations are assimilated every 3 h with a thinning distance of 30 km.展开更多
Monitoring and predicting highly localized weather events over a very short-term period,typically ranging from minutes to a few hours,are very important for decision makers and public action.Nowcasting these events us...Monitoring and predicting highly localized weather events over a very short-term period,typically ranging from minutes to a few hours,are very important for decision makers and public action.Nowcasting these events usually relies on radar observations through monitoring and extrapolation.With advanced high-resolution imaging and sounding observations from weather satellites,nowcasting can be enhanced by combining radar,satellite,and other data,while quantitative applications of those data for nowcasting are advanced through using machine learning techniques.Those applications include monitoring the location,impact area,intensity,water vapor,atmospheric instability,precipitation,physical properties,and optical properties of the severe storm at different stages(pre-convection,initiation,development,and decaying),identification of storm types(wind,snow,hail,etc.),and predicting the occurrence and evolution of the storm.Satellite observations can provide information on the environmental characteristics in the preconvection stage and are very useful for situational awareness and storm warning.This paper provides an overview of recent progress on quantitative applications of satellite data in nowcasting and its challenges,and future perspectives are also addressed and discussed.展开更多
基金supported by the National Natural Science Foundation of China (Grant No. 41305089)the National Oceanic and Atmospheric Administration (Grant No. NA10NES4400013)the Public Industry-specific Fund for Meteorology (Grant No. GYHY201406011)
文摘Atmospheric InfraRed Sounder (AIRS) measurements are a valuable supplement to current observational data,especially over the oceans where conventional data are sparse.In this study,two types of AIRS-retrieved temperature and moisture profiles,the AIRS Science Team product (SciSup) and the single field-of-view (SFOV) research product,were evaluated with European Centre for Medium-Range Weather Forecasts (ECMWF) analysis data over the Atlantic Ocean during Hurricane Ike (2008) and Hurricane Irene (2011).The evaluation results showed that both types of AIRS profiles agreed well with the ECMWF analysis,especially between 200 hPa and 700 hPa.The average standard deviation of both temperature profiles was approximately 1 K under 200 hPa,where the mean AIRS temperature profile from the AIRS SciSup retrievals was slightly colder than that from the AIRS SFOV retrievals.The mean SciSup moisture profile was slightly drier than that from the SFOV in the mid troposphere.A series of data assimilation and forecast experiments was then conducted with the Advanced Research version of the Weather Research and Forecasting (WRF) model and its three-dimensional variational (3DVAR) data assimilation system for hurricanes Ike and Irene.The results showed an improvement in the hurricane track due to the assimilation of AIRS clear-sky temperature profiles in the hurricane environment.In terms of total precipitable water and rainfall forecasts,the hurricane moisture environment was found to be affected by the AIRS sounding assimilation.Meanwhile,improving hurricane intensity forecasts through assimilating AIRS profiles remains a challenge for further study.
基金supported by the NESDIS OPPA OSSE program (Grant No. NA15NES4320001)
文摘Accurate atmospheric temperature and moisture information with high temporal/spatial resolutions are two of the key parameters needed in regional numerical weather prediction(NWP) models to reliably predict high-impact weather events such as local severe storms(LSSs). High spectral resolution or hyperspectral infrared(HIR) sounders from geostationary orbit(GEO) provide an unprecedented source of near time-continuous, three-dimensional information on the dynamic and thermodynamic atmospheric fields—an important benefit for nowcasting and NWP-based forecasting. In order to demonstrate the value of GEO HIR sounder radiances on LSS forecasts, a quick regional OSSE(Observing System Simulation Experiment)framework has been developed, including high-resolution nature run generation, synthetic observation simulation and validation, and impact study on LSS forecasts. Results show that, on top of the existing LEO(low earth orbit) sounders, a GEO HIR sounder may provide value-added impact [a reduction of 3.56% in normalized root-mean-square difference(RMSD)] on LSS forecasts due to large spatial coverage and high temporal resolution, even though the data are assimilated every 6 h with a thinning of 60 km. Additionally, more frequent assimilations and smaller thinning distances allow more observations to be assimilated, and may further increase the positive impact from a GEO HIR sounder. On the other hand, with denser and more frequent observations assimilated, it becomes more difficult to handle the spatial error correlation in observations and gravity waves due to the limitations of current assimilation and forecast systems(such as a static background error covariance). The peak reduction of 4.6% in normalized RMSD is found when observations are assimilated every 3 h with a thinning distance of 30 km.
基金Supported by the National Natural Science Foundation of China(U2142201 and 42175086).
文摘Monitoring and predicting highly localized weather events over a very short-term period,typically ranging from minutes to a few hours,are very important for decision makers and public action.Nowcasting these events usually relies on radar observations through monitoring and extrapolation.With advanced high-resolution imaging and sounding observations from weather satellites,nowcasting can be enhanced by combining radar,satellite,and other data,while quantitative applications of those data for nowcasting are advanced through using machine learning techniques.Those applications include monitoring the location,impact area,intensity,water vapor,atmospheric instability,precipitation,physical properties,and optical properties of the severe storm at different stages(pre-convection,initiation,development,and decaying),identification of storm types(wind,snow,hail,etc.),and predicting the occurrence and evolution of the storm.Satellite observations can provide information on the environmental characteristics in the preconvection stage and are very useful for situational awareness and storm warning.This paper provides an overview of recent progress on quantitative applications of satellite data in nowcasting and its challenges,and future perspectives are also addressed and discussed.