期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Dynamics of soil organic carbon following land-use change:insights from stable C-isotope analysis in black soil of Northeast China 被引量:3
1
作者 Chenglong Tu Congqiang Liu +4 位作者 timothy a.quine Matthew William Jones Taoze Liu Longbo Li Wenjing Liu 《Acta Geochimica》 EI CAS CSCD 2018年第5期746-757,共12页
Intensive soil tillage is a significant factor in soil organic matter decline in cultivated soils. Both cultivation abandonment and foregoing tillage have been encouraged in the past 30 years to reduce greenhouse gas ... Intensive soil tillage is a significant factor in soil organic matter decline in cultivated soils. Both cultivation abandonment and foregoing tillage have been encouraged in the past 30 years to reduce greenhouse gas emissions and soil erosion. However, the dynamic processes of soil organic carbon (SOC) in areas of either continuous cultivation or abandonment remain unclear and inconsistent.Our aims were to assess and model the dynamic processes of SOC under continuous tillage and after cultivation abandonment in the black soil of Northeast China. Soil profiles were collected of cultivated or abandoned land with cultivation history of 0–100 years. An isotope mass balance equation was used to calculate the proportion of SOC derived from corn debris (C_4) and from natural vegetation (C_3) to deduce the dynamic process. Approximately 40% of SOC in the natural surface soil (0–10 cm) was eroded in the first 5 years of cultivation, increasing to about 75% within 40 years, before a slow recovery. C_4 above 30 cm soil depth increased by 4.5%–5% or 0.11–0.12 g·kg^(-1) on average per year under continuous cultivation, while it decreased by approximately 0.34% annually in the surface soil after cultivation abandonment.The increase in the percentage of C_4 was fitted to a linear equation with given intercepts in the upper 30 cm of soil in cultivated land. A significant relationship between the change of C_4 and time was found only in the surface soil after abandonment of cultivation. These results demonstrate the loss and accumulation of corn-derived SOC in surface black soil of Northeast China under continuous tillage or cultivation abandonment. 展开更多
关键词 C3 photosynthesis C4 photosynthesis Land-use change Stable carbon isotopes Black soil of Northeast China
在线阅读 下载PDF
Rock crevices determine woody and herbaceous plant cover in the karst critical zone 被引量:12
2
作者 Hongyan LIU Zihan JIANG +6 位作者 Jingyu DAI Xiuchen WU Jian PENG Hongya WANG Jeroen MEERSMANS Sophie M.GREEN timothy a.quine 《Science China Earth Sciences》 SCIE EI CAS CSCD 2019年第11期1756-1763,共8页
The study of the critical zones(CZs) of the Earth link the composition and function of aboveground vegetation with the characteristics of the rock layers, providing a new way to study how the unique rock and soil cond... The study of the critical zones(CZs) of the Earth link the composition and function of aboveground vegetation with the characteristics of the rock layers, providing a new way to study how the unique rock and soil conditions in karst regions affect the aboveground vegetation. Based on survey results of the rocks, soils and vegetation in the dolomite and limestone distribution areas in the karst area of central Guizhou, it was found that woody plant cover increases linearly with the number of cracks with a width of more than 1 mm, while the cover of herbaceous plants shows the opposite trend(p<0.01). The dolomite distribution area is characterized by undeveloped crevices, and the thickness of the soil layer is generally less than 20 cm, which is suitable for the distribution of herbaceous plants with shallow roots. Due to the development of crevices in the limestone distribution area, the soil is deeply distributed through the crevices for the deep roots of trees, which leads to a diversified species composition and a complicated structure in the aboveground vegetation. Based on moderate resolution imaging spectroradiometer(MODIS) remote sensing data from 2001 to 2010, the normalized differentiated vegetation index(NDVI) and annual net primary productivity(NPP) results for each phase of a 16-day interval further indicate that the NDVI of the limestone distribution area is significantly higher than that in the dolomite distribution area, but the average annual NPP is the opposite. The results of this paper indicate that in karst CZs, the lithology determines the structure and distribution of the soil, which further determines the cover of woody and herbaceous plants in the aboveground vegetation. Although the amount of soil in the limestone area may be less than that in the dolomite area, the developed crevice structure is more suitable for the growth of trees with deep roots, and the vegetation activity is strong. At present, the treatment of rocky desertification in karst regions needs to fully consider the rock-soilvegetation-air interactions in karst CZs and propose vegetation restoration measures suitable for different lithologies. 展开更多
关键词 VEGETATION composition VEGETATION productivity DOLOMITE LIMESTONE KARST critical zone
原文传递
Structure-from-Motion Photogrammetry and Rare Earth Oxides can quantify diffuse and convergent soil loss and source apportionment
3
作者 Pia Benaud Karen Anderson +3 位作者 Mike R.James timothy a.quine John N.Quinton Richard E.Brazier 《International Soil and Water Conservation Research》 SCIE CSCD 2023年第4期633-648,共16页
Accurately quantifying rates of soil erosion requires capturing both the volumetric nature of the visible,convergent fluvial pathways(also known as rills)and the subtle nature of the less-visible,diffuse pathways(inte... Accurately quantifying rates of soil erosion requires capturing both the volumetric nature of the visible,convergent fluvial pathways(also known as rills)and the subtle nature of the less-visible,diffuse pathways(interrill areas).The aim of this study was to use Rare Earth Oxide(REO)tracers and Structure-from-Motion(SfM)photogrammetry to elucidate retrospective information about soil erosion rates and sediment sources during different soil erosion conditions,within a controlled laboratory environment.The experimental conditions created erosion events consistent with diffuse and convergent erosion processes.REO tracers allowed the sediment transport distances of over 2 m to be described,and helped resolved the relative contribution of diffuse and convergent soil erosion;interrill areas were also iden-tified as a significant sediment sources soil loss under convergent erosion conditions.While the potential for SfM photogrammetry to resolve sub-millimetre elevations changes was demonstrated,under some conditions non-erosional changes in surface elevation,such as compaction,exceeded volumes of soil loss via diffuse erosion.The discrepancies between SfM Photogrammetry calculations and REO tagged sediment export were beneficial,identifying that during soil erosion events sediment in both aggregate and particle form is deposited within the convergent features,even when the rill extended the full length of the soil surface.The combination of SfM photogrammetry and REO tracers has provided a novel platform for building a spatial understanding of patterns of soil loss and source apportionment between rill and interrill erosion. 展开更多
关键词 Soil erosion Structure-from-Motion Photogrammetry Rare Earth Oxides Tracers Sediment Rainfall simulator Sheetwash Rilling Interrill
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部