Blood-sucking insects can cause severe health damage in humans and animals for example by causing allergic reactions or by the propagation of vector-borne diseases such as malaria. Textiles are widely used for insect ...Blood-sucking insects can cause severe health damage in humans and animals for example by causing allergic reactions or by the propagation of vector-borne diseases such as malaria. Textiles are widely used for insect protection with bednets, curtains or outdoor clothing. The main approach is functionalization of the textiles with insect repellents like DEET or insecticides like permethrin. Instead of or in addition to these chemical measures the mechanical protection potential of the fabric itself has to be considered for preventing insect bites and stings effectively. Densely woven fabrics or spacer fabrics can serve as a chemical-free protection system. To compare the physical protection potential of different textiles against the mouthparts and stings of blood-sucking insects, we developed an easy and reliable test system which can be used in textile research institutes and companies. The system is mobile and can also be applied on wet textiles. We here describe the construction and validation of our new test system.展开更多
This study evaluated the allergen impermeability against airborne allergens of dust mite droppings through all parts of commercial bed covers, including surface seams and zippers. Specimens were taken from places with...This study evaluated the allergen impermeability against airborne allergens of dust mite droppings through all parts of commercial bed covers, including surface seams and zippers. Specimens were taken from places with and without seams and zipper. A novel penetration cell was developed to expose the specimens to an inoculum of purified mite droppings that was assessed for its allergen content Der p1 prior to the penetration tests. Using covers of different construction and material, the penetration level increased significantly in the presence of seams and zippers and could reach up to 6% depending on the seam’s/zipper’s characteristics and quality. Therefore, zippers and seams have to be considered as access points for the penetration of mite droppings. As for the penetration of airborne mite particles through the zipper, the penetration level was greatly attenuated by the presence of a cover strip. Depending on the respective quality and the construction type, the mite allergen Der p1 penetrated most likely through the zipper and seams of the specimens, already after a single laundry cycle. Hence, laundry may compromise the barrier performance and proves to be an important quality feature. In all samples, the textile surface showed sufficient allergen impermeability. Our conclusions provide recommendations to both manufacturers and users.展开更多
文摘Blood-sucking insects can cause severe health damage in humans and animals for example by causing allergic reactions or by the propagation of vector-borne diseases such as malaria. Textiles are widely used for insect protection with bednets, curtains or outdoor clothing. The main approach is functionalization of the textiles with insect repellents like DEET or insecticides like permethrin. Instead of or in addition to these chemical measures the mechanical protection potential of the fabric itself has to be considered for preventing insect bites and stings effectively. Densely woven fabrics or spacer fabrics can serve as a chemical-free protection system. To compare the physical protection potential of different textiles against the mouthparts and stings of blood-sucking insects, we developed an easy and reliable test system which can be used in textile research institutes and companies. The system is mobile and can also be applied on wet textiles. We here describe the construction and validation of our new test system.
文摘This study evaluated the allergen impermeability against airborne allergens of dust mite droppings through all parts of commercial bed covers, including surface seams and zippers. Specimens were taken from places with and without seams and zipper. A novel penetration cell was developed to expose the specimens to an inoculum of purified mite droppings that was assessed for its allergen content Der p1 prior to the penetration tests. Using covers of different construction and material, the penetration level increased significantly in the presence of seams and zippers and could reach up to 6% depending on the seam’s/zipper’s characteristics and quality. Therefore, zippers and seams have to be considered as access points for the penetration of mite droppings. As for the penetration of airborne mite particles through the zipper, the penetration level was greatly attenuated by the presence of a cover strip. Depending on the respective quality and the construction type, the mite allergen Der p1 penetrated most likely through the zipper and seams of the specimens, already after a single laundry cycle. Hence, laundry may compromise the barrier performance and proves to be an important quality feature. In all samples, the textile surface showed sufficient allergen impermeability. Our conclusions provide recommendations to both manufacturers and users.