The high-cycle fatigue fracture characteristics and damage mechanism of nickel-based single crystal superalloys at 850℃ was investigated.The results indicate that high-cycle fatigue cracks in single crystal superallo...The high-cycle fatigue fracture characteristics and damage mechanism of nickel-based single crystal superalloys at 850℃ was investigated.The results indicate that high-cycle fatigue cracks in single crystal superalloys generally originate from defect locations on the subsurface or interior of the specimen at 850℃.Under the condition of stress ratio R=0.05,as the fatigue load decreases,the high-cycle fatigue life gradually increases.The high-cycle fatigue fracture is mainly characterized by octahedral slip mechanism.At high stress and low lifespan,the fracture exhibits single or multiple slip surface features.Some fractures originate along a vertical small plane and then propagate along the{111}slip surface.At low stress and high lifespan,the fracture surface tend to alternate and expand along multiple slip planes after originating from subsurface or internal sources,exhibiting characteristics of multiple slip planes.Through electron backscatter diffraction and transmission electron microscope analysis,there is obvious oxidation behavior on the surface of the high-cycle fatigue fracture,and the fracture section is composed of oxidation layer,distortion layer,and matrix layer from the outside to the inside.Among them,the main components of the oxidation layer are oxides of Ni and Co.The distortion layer is mainly distributed in the form of elongated or short rod-shaped oxides of Al,Ta,and W.The matrix layer is a single crystal layer.Crack initiation and propagation mechanism were obtained by systematical analysis of a large number of highcycle fatigue fractures.In addition,the stress ratio of 0.05 is closer to the vibration mode of turbine blades during actual service,providing effective guidance for the study of failure and fracture mechanisms of turbine blades.展开更多
FMs(Food-borne melanoidins)are brown high molecular weight polymers formed by the Mailiard reaction between carbohydrates and nitrogen-containing compounds during the processing of food or Traditional Chinese Medicine...FMs(Food-borne melanoidins)are brown high molecular weight polymers formed by the Mailiard reaction between carbohydrates and nitrogen-containing compounds during the processing of food or Traditional Chinese Medicine(TCM),and are widely found in food-borne products such as TCM concoctions,bakery,brewing,soy sauce,ferment and other food-borne products.FMs not only have a variety of biological activities,such as antioxidant,antibacterial,immunomodulation,regulation of intestinal flora,etc.,and can change the color,aroma and taste of food.The diversity of its components has become a research hotspot at home and abroad in recent years,with a wide range of application prospects.Therefore,this paper summarizes the existing information on FMs at home and abroad,mainly describes their preparation process,physicochemical properties,structural characteristics and functional activity research progress.Typical FMs,such as coffee,biscuits,wine and soy sauce in daily food,and Polygonatum,Perilla oil,Black ginseng,and Red jujube in T,were highlighted.Summarising the current status of research between the chemistry and pharmacodynamics of relevant FMs and presenting challenges and future recommendations for melanoidin research.In future research on FMs,one should pay more attention to basic research,especially isolation and purification and generation mechanisms,to further demonstrate the biological activity of FMs in vivo and in clinical trials.Thus,the potential value of its existence is deeply exploited to meet the needs of technology,production and health.展开更多
加速康复外科(enhanced recovery after surgery,ERAS)是一项基于多学科、多模式的围术期干预理念,旨在减少手术应激反应和术后并发症,促进患者早期康复、提高患者术后生活质量。在2019年5月,美国〃胚4发布了心外科领域的第一部加速康...加速康复外科(enhanced recovery after surgery,ERAS)是一项基于多学科、多模式的围术期干预理念,旨在减少手术应激反应和术后并发症,促进患者早期康复、提高患者术后生活质量。在2019年5月,美国〃胚4发布了心外科领域的第一部加速康复外科指南,旨在建立一套心脏外科ERAS的标准和规范。然而我国心脏外科领域对ERAS仍然缺乏深入、有效的理解,本综述从国内外ERAS研究和指南入手,分析目前心脏外科ERAS的应用及现状,归纳、总结并提出一套安全、有效、适用的心脏外科ERAS体系,为心脏外科临床医师提供标准化、规范化参考意见。展开更多
基金National Science and Technology Major Project(J2019-VI-0022-0138)。
文摘The high-cycle fatigue fracture characteristics and damage mechanism of nickel-based single crystal superalloys at 850℃ was investigated.The results indicate that high-cycle fatigue cracks in single crystal superalloys generally originate from defect locations on the subsurface or interior of the specimen at 850℃.Under the condition of stress ratio R=0.05,as the fatigue load decreases,the high-cycle fatigue life gradually increases.The high-cycle fatigue fracture is mainly characterized by octahedral slip mechanism.At high stress and low lifespan,the fracture exhibits single or multiple slip surface features.Some fractures originate along a vertical small plane and then propagate along the{111}slip surface.At low stress and high lifespan,the fracture surface tend to alternate and expand along multiple slip planes after originating from subsurface or internal sources,exhibiting characteristics of multiple slip planes.Through electron backscatter diffraction and transmission electron microscope analysis,there is obvious oxidation behavior on the surface of the high-cycle fatigue fracture,and the fracture section is composed of oxidation layer,distortion layer,and matrix layer from the outside to the inside.Among them,the main components of the oxidation layer are oxides of Ni and Co.The distortion layer is mainly distributed in the form of elongated or short rod-shaped oxides of Al,Ta,and W.The matrix layer is a single crystal layer.Crack initiation and propagation mechanism were obtained by systematical analysis of a large number of highcycle fatigue fractures.In addition,the stress ratio of 0.05 is closer to the vibration mode of turbine blades during actual service,providing effective guidance for the study of failure and fracture mechanisms of turbine blades.
基金Key R&D Projects of Sichuan Provincial Science and Technology Department(2019YFS0024)Key R&D Project of Sichuan Provincial Science and Technology Department(2021YFN0015)+1 种基金Sichuan Provincial Science and Technology Department Youth Science and Technology Innovation Team Project National Natural Science Foundation of China(2020JDTD0022)Project of Sichuan Provincial Science and Technology Department(2022YFS0444)。
文摘FMs(Food-borne melanoidins)are brown high molecular weight polymers formed by the Mailiard reaction between carbohydrates and nitrogen-containing compounds during the processing of food or Traditional Chinese Medicine(TCM),and are widely found in food-borne products such as TCM concoctions,bakery,brewing,soy sauce,ferment and other food-borne products.FMs not only have a variety of biological activities,such as antioxidant,antibacterial,immunomodulation,regulation of intestinal flora,etc.,and can change the color,aroma and taste of food.The diversity of its components has become a research hotspot at home and abroad in recent years,with a wide range of application prospects.Therefore,this paper summarizes the existing information on FMs at home and abroad,mainly describes their preparation process,physicochemical properties,structural characteristics and functional activity research progress.Typical FMs,such as coffee,biscuits,wine and soy sauce in daily food,and Polygonatum,Perilla oil,Black ginseng,and Red jujube in T,were highlighted.Summarising the current status of research between the chemistry and pharmacodynamics of relevant FMs and presenting challenges and future recommendations for melanoidin research.In future research on FMs,one should pay more attention to basic research,especially isolation and purification and generation mechanisms,to further demonstrate the biological activity of FMs in vivo and in clinical trials.Thus,the potential value of its existence is deeply exploited to meet the needs of technology,production and health.
文摘加速康复外科(enhanced recovery after surgery,ERAS)是一项基于多学科、多模式的围术期干预理念,旨在减少手术应激反应和术后并发症,促进患者早期康复、提高患者术后生活质量。在2019年5月,美国〃胚4发布了心外科领域的第一部加速康复外科指南,旨在建立一套心脏外科ERAS的标准和规范。然而我国心脏外科领域对ERAS仍然缺乏深入、有效的理解,本综述从国内外ERAS研究和指南入手,分析目前心脏外科ERAS的应用及现状,归纳、总结并提出一套安全、有效、适用的心脏外科ERAS体系,为心脏外科临床医师提供标准化、规范化参考意见。