期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Modeling and Control of the Linear Motor Active Suspension with Quasi-zero Stiffness Air Spring System Using Polynomial Chaos Expansion
1
作者 Pai Li Xing Xu +3 位作者 Cong Liang te chen Jiachen Jiang Vincent Akolbire Atindana 《Chinese Journal of Mechanical Engineering》 2025年第5期101-119,共19页
As a crucial component of intelligent chassis systems,air suspension significantly enhances driver comfort and vehicle stability.To further improve the adaptability of commercial vehicles to complex and variable road ... As a crucial component of intelligent chassis systems,air suspension significantly enhances driver comfort and vehicle stability.To further improve the adaptability of commercial vehicles to complex and variable road conditions,this paper proposes a linear motor active suspension with quasi-zero stiffness(QZS)air spring system.Firstly,a dynamic model of the linear motor active suspension with QZS air spring system is established.Secondly,considering the random uncertainties in the linear motor parameters due to manufacturing and environmental factors,a dynamic model and state equations incorporating these uncertainties are constructed using the polynomial chaos expansion(PCE)method.Then,based on H_(2) robust control theory and the Kalman filter,a state feedback control law is derived,accounting for the random parameter uncertainties.Finally,simulation and hardware-in-the-loop(HIL)experimental results demonstrate that the PCE-H_(2) robust controller not only provides better performance in terms of vehicle ride comfort compared to general H_(2) robust controller but also exhibits higher robustness to the effects of random uncertain parameters,resulting in more stable control performance. 展开更多
关键词 Linear motor active suspension Quasi-zero stiffness air spring Stochastic uncertain systems Polynomial chaos expansion Robust control
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部