Email communication plays a crucial role in both personal and professional contexts;however,it is frequently compromised by the ongoing challenge of spam,which detracts from productivity and introduces considerable se...Email communication plays a crucial role in both personal and professional contexts;however,it is frequently compromised by the ongoing challenge of spam,which detracts from productivity and introduces considerable security risks.Current spam detection techniques often struggle to keep pace with the evolving tactics employed by spammers,resulting in user dissatisfaction and potential data breaches.To address this issue,we introduce the Divide and Conquer-Generative Adversarial Network Squeeze and Excitation-Based Framework(DaC-GANSAEBF),an innovative deep-learning model designed to identify spam emails.This framework incorporates cutting-edge technologies,such as Generative Adversarial Networks(GAN),Squeeze and Excitation(SAE)modules,and a newly formulated Light Dual Attention(LDA)mechanism,which effectively utilizes both global and local attention to discern intricate patterns within textual data.This approach significantly improves efficiency and accuracy by segmenting scanned email content into smaller,independently evaluated components.The model underwent training and validation using four publicly available benchmark datasets,achieving an impressive average accuracy of 98.87%,outperforming leading methods in the field.These findings underscore the resilience and scalability of DaC-GANSAEBF,positioning it as a viable solution for contemporary spam detection systems.The framework can be easily integrated into existing technologies to enhance user security and reduce the risks associated with spam.展开更多
A healthy brain is vital to every person since the brain controls every movement and emotion.Sometimes,some brain cells grow unexpectedly to be uncontrollable and cancerous.These cancerous cells are called brain tumor...A healthy brain is vital to every person since the brain controls every movement and emotion.Sometimes,some brain cells grow unexpectedly to be uncontrollable and cancerous.These cancerous cells are called brain tumors.For diagnosed patients,their lives depend mainly on the early diagnosis of these tumors to provide suitable treatment plans.Nowadays,Physicians and radiologists rely on Magnetic Resonance Imaging(MRI)pictures for their clinical evaluations of brain tumors.These evaluations are time-consuming,expensive,and require expertise with high skills to provide an accurate diagnosis.Scholars and industrials have recently partnered to implement automatic solutions to diagnose the disease with high accuracy.Due to their accuracy,some of these solutions depend on deep-learning(DL)methodologies.These techniques have become important due to their roles in the diagnosis process,which includes identification and classification.Therefore,there is a need for a solid and robust approach based on a deep-learning method to diagnose brain tumors.The purpose of this study is to develop an intelligent automatic framework for brain tumor diagnosis.The proposed solution is based on a novel dense dynamic residual self-attention transfer adaptive learning fusion approach(NDDRSATALFA),carried over two implemented deep-learning networks:VGG19 and UNET to identify and classify brain tumors.In addition,this solution applies a transfer learning approach to exchange extracted features and data within the two neural networks.The presented framework is trained,validated,and tested on six public datasets of MRIs to detect brain tumors and categorize these tumors into three suitable classes,which are glioma,meningioma,and pituitary.The proposed framework yielded remarkable findings on variously evaluated performance indicators:99.32%accuracy,98.74%sensitivity,98.89%specificity,99.01%Dice,98.93%Area Under the Curve(AUC),and 99.81%F1-score.In addition,a comparative analysis with recent state-of-the-art methods was performed and according to the comparative analysis,NDDRSATALFA shows an admirable level of reliability in simplifying the timely identification of diverse brain tumors.Moreover,this framework can be applied by healthcare providers to assist radiologists,pathologists,and physicians in their evaluations.The attained outcomes open doors for advanced automatic solutions that improve clinical evaluations and provide reasonable treatment plans.展开更多
Epilepsy is a long-term neurological condition marked by recurrent seizures,which result from abnormal electrical activity in the brain that disrupts its normal functioning.Traditional methods for detecting epilepsy t...Epilepsy is a long-term neurological condition marked by recurrent seizures,which result from abnormal electrical activity in the brain that disrupts its normal functioning.Traditional methods for detecting epilepsy through machine learning typically utilize discrete-time models,which inadequately represent the continuous dynamics of electroencephalogram(EEG)signals.To overcome this limitation,we introduce an innovative approach that employs Neural Ordinary Differential Equations(NODEs)to model EEG signals as continuous-time systems.This allows for effective management of irregular sampling and intricate temporal patterns.In contrast to conventional techniques,such as Convolutional Neural Networks(CNNs)and Recurrent Neural Networks(RNNs),which necessitate fixedlength inputs and often struggle with long-term dependencies,our framework incorporates:(1)a NODE block to capture continuous-time EEG dynamics,(2)a feature extraction module tailored for seizure-specific patterns,and(3)an attention-based fusion mechanism to enhance interpretability in classification.When evaluated on three publicly accessible EEG datasets,including those from Boston Children’s Hospital and the Massachusetts Institute of Technology(CHB-MIT)and the Temple University Hospital(TUH)EEG Corpus,the model demonstrated an average accuracy of 98.2%,a sensitivity of 97.8%,a specificity of 98.3%,and an F1-score of 97.9%.Additionally,the inference latency was reduced by approximately 30%compared to standard CNN and Long Short-Term Memory(LSTM)architectures,making it well-suited for real-time applications.The method’s resilience to noise and its adaptability to irregular sampling enhance its potential for clinical use in real-time settings.展开更多
A brain tumor is an excessive development of abnormal and uncontrolled cells in the brain.This growth is considered deadly since it may cause death.The brain controls numerous functions,such as memory,vision,and emoti...A brain tumor is an excessive development of abnormal and uncontrolled cells in the brain.This growth is considered deadly since it may cause death.The brain controls numerous functions,such as memory,vision,and emotions.Due to the location,size,and shape of these tumors,their detection is a challenging and complex task.Several efforts have been conducted toward improved detection and yielded promising results and outcomes.However,the accuracy should be higher than what has been reached.This paper presents a method to detect brain tumors with high accuracy.The method works using an image segmentation technique and a classifier in MATLAB.The utilized classifier is a SupportVector Machine(SVM).DiscreteWavelet Transform(DWT)and Principal Component Analysis(PCA)are also involved.A dataset from the Kaggle website is used to test the developed approach.The obtained results reached nearly 99.2%of accuracy.The paper provides a confusion matrix of applying the proposed approach to testing images and a comparative evaluation between the developed method and some works in the literature.This evaluation shows that the presented system outperforms other approaches regarding the accuracy,precision,and recall.This research discovered that the developed method is extremely useful in detecting brain tumors,given the high accuracy,precision,and recall results.The proposed system directs us to believe that bringing this kind of technology to physicians diagnosing brain tumors is crucial.展开更多
According to the World Health Organization(WHO),Brain Tumors(BrT)have a high rate of mortality across the world.The mortality rate,however,decreases with early diagnosis.Brain images,Computed Tomography(CT)scans,Magne...According to the World Health Organization(WHO),Brain Tumors(BrT)have a high rate of mortality across the world.The mortality rate,however,decreases with early diagnosis.Brain images,Computed Tomography(CT)scans,Magnetic Resonance Imaging scans(MRIs),segmentation,analysis,and evaluation make up the critical tools and steps used to diagnose brain cancer in its early stages.For physicians,diagnosis can be challenging and time-consuming,especially for those with little expertise.As technology advances,Artificial Intelligence(AI)has been used in various domains as a diagnostic tool and offers promising outcomes.Deep-learning techniques are especially useful and have achieved exquisite results.This study proposes a new Computer-Aided Diagnosis(CAD)system to recognize and distinguish between tumors and non-tumor tissues using a newly developed middleware to integrate two deep-learning technologies to segment brain MRI scans and classify any discovered tumors.The segmentation mechanism is used to determine the shape,area,diameter,and outline of any tumors,while the classification mechanism categorizes the type of cancer as slow-growing or aggressive.The main goal is to diagnose tumors early and to support the work of physicians.The proposed system integrates a Convolutional Neural Network(CNN),VGG-19,and Long Short-Term Memory Networks(LSTMs).A middleware framework is developed to perform the integration process and allow the system to collect the required data for the classification of tumors.Numerous experiments have been conducted on different five datasets to evaluate the presented system.These experiments reveal that the system achieves 97.98%average accuracy when the segmentation and classification functions were utilized,demonstrating that the proposed system is a powerful and valuable method to diagnose BrT early using MRI images.In addition,the system can be deployed in medical facilities to support and assist physicians to provide an early diagnosis to save patients’lives and avoid the high cost of treatments.展开更多
More than 500,000 patients are diagnosed with breast cancer annually.Authorities worldwide reported a death rate of 11.6%in 2018.Breast tumors are considered a fatal disease and primarily affect middle-aged women.Vari...More than 500,000 patients are diagnosed with breast cancer annually.Authorities worldwide reported a death rate of 11.6%in 2018.Breast tumors are considered a fatal disease and primarily affect middle-aged women.Various approaches to identify and classify the disease using different technologies,such as deep learning and image segmentation,have been developed.Some of these methods reach 99%accuracy.However,boosting accuracy remains highly important as patients’lives depend on early diagnosis and specified treatment plans.This paper presents a fully computerized method to detect and categorize tumor masses in the breast using two deep-learning models and a classifier on different datasets.This method specifically uses ResNet50 and AlexNet,convolutional neural networks(CNNs),for deep learning and a K-Nearest-Neighbor(KNN)algorithm to classify data.Various experiments have been conducted on five datasets:the Mammographic Image Analysis Society(MIAS),Breast Cancer Histopathological Annotation and Diagnosis(BreCaHAD),King Abdulaziz University Breast Cancer Mammogram Dataset(KAU-BCMD),Breast Histopathology Images(BHI),and Breast Cancer Histopathological Image Classification(BreakHis).These datasets were used to train,validate,and test the presented method.The obtained results achieved an average of 99.38%accuracy,surpassing other models.Essential performance quantities,including precision,recall,specificity,and F-score,reached 99.71%,99.46%,98.08%,and 99.67%,respectively.These outcomes indicate that the presented method offers essential aid to pathologists diagnosing breast cancer.This study suggests using the implemented algorithm to support physicians in analyzing breast cancer correctly.展开更多
Lung cancer is the leading cause of cancer-related death around the globe.The treatment and survival rates among lung cancer patients are significantly impacted by early diagnosis.Most diagnostic techniques can identi...Lung cancer is the leading cause of cancer-related death around the globe.The treatment and survival rates among lung cancer patients are significantly impacted by early diagnosis.Most diagnostic techniques can identify and classify only one type of lung cancer.It is crucial to close this gap with a system that detects all lung cancer types.This paper proposes an intelligent decision support system for this purpose.This system aims to support the quick and early detection and classification of all lung cancer types and subtypes to improve treatment and save lives.Its algorithm uses a Convolutional Neural Network(CNN)tool to perform deep learning and a Random Forest Algorithm(RFA)to help classify the type of cancer present using several extracted features,including histograms and energy.Numerous simulation experiments were conducted on MATLAB,evidencing that this system achieves 98.7%accuracy and over 98%precision and recall.A comparative assessment assessing accuracy,recall,precision,specificity,and F-score between the proposed algorithm and works from the literature shows that the proposed system in this study outperforms existing methods in all considered metrics.This study found that using CNNs and RFAs is highly effective in detecting lung cancer,given the high accuracy,precision,and recall results.These results lead us to believe that bringing this kind of technology to doctors diagnosing lung cancer is critical.展开更多
Data mining and analytics involve inspecting and modeling large pre-existing datasets to discover decision-making information.Precision agriculture uses datamining to advance agricultural developments.Many farmers are...Data mining and analytics involve inspecting and modeling large pre-existing datasets to discover decision-making information.Precision agriculture uses datamining to advance agricultural developments.Many farmers aren’t getting the most out of their land because they don’t use precision agriculture.They harvest crops without a well-planned recommendation system.Future crop production is calculated by combining environmental conditions and management behavior,yielding numerical and categorical data.Most existing research still needs to address data preprocessing and crop categorization/classification.Furthermore,statistical analysis receives less attention,despite producing more accurate and valid results.The study was conducted on a dataset about Karnataka state,India,with crops of eight parameters taken into account,namely the minimum amount of fertilizers required,such as nitrogen,phosphorus,potassium,and pH values.The research considers rainfall,season,soil type,and temperature parameters to provide precise cultivation recommendations for high productivity.The presented algorithm converts discrete numerals to factors first,then reduces levels.Second,the algorithm generates six datasets,two fromCase-1(dataset withmany numeric variables),two from Case-2(dataset with many categorical variables),and one from Case-3(dataset with reduced factor variables).Finally,the algorithm outputs a class membership allocation based on an extended version of the K-means partitioning method with lambda estimation.The presented work produces mixed-type datasets with precisely categorized crops by organizing data based on environmental conditions,soil nutrients,and geo-location.Finally,the prepared dataset solves the classification problem,leading to a model evaluation that selects the best dataset for precise crop prediction.展开更多
Due to excessive car usage,pollution and traffic have increased.In urban cities in Saudi Arabia,such as Riyadh and Jeddah,drivers and air quality suffer from traffic congestion.Although the government has implemented ...Due to excessive car usage,pollution and traffic have increased.In urban cities in Saudi Arabia,such as Riyadh and Jeddah,drivers and air quality suffer from traffic congestion.Although the government has implemented numerous solutions to resolve this issue or reduce its effect on the environment and residents,it still exists and is getting worse.This paper proposes an intelligent,adaptive,practical,and feasible deep learning method for intelligent traffic control.It uses an Internet of Things(IoT)sensor,a camera,and a Convolutional Neural Network(CNN)tool to control traffic in real time.An image segmentation algorithm analyzes inputs from the cameras installed in designated areas.This study considered whether CNNs and IoT technologies could ensure smooth traffic flow in high-speed,high-congestion situations.The presented algorithm calculates traffic density and cars’speeds to determine which lane gets high priority first.A real case study has been conducted on MATLAB to verify and validate the results of this approach.This algorithm estimates the reduced average waiting time during the red light and the suggested time for the green and red lights.An assessment between some literature works and the presented algorithm is also provided.In contrast to traditional traffic management methods,this intelligent and adaptive algorithm reduces traffic congestion,automobile waiting times,and accidents.展开更多
基金funded by the Deanship of Scientific Research(DSR)at King Abdulaziz University,Jeddah,Saudi Arabia under Grant No.(GPIP:71-829-2024).
文摘Email communication plays a crucial role in both personal and professional contexts;however,it is frequently compromised by the ongoing challenge of spam,which detracts from productivity and introduces considerable security risks.Current spam detection techniques often struggle to keep pace with the evolving tactics employed by spammers,resulting in user dissatisfaction and potential data breaches.To address this issue,we introduce the Divide and Conquer-Generative Adversarial Network Squeeze and Excitation-Based Framework(DaC-GANSAEBF),an innovative deep-learning model designed to identify spam emails.This framework incorporates cutting-edge technologies,such as Generative Adversarial Networks(GAN),Squeeze and Excitation(SAE)modules,and a newly formulated Light Dual Attention(LDA)mechanism,which effectively utilizes both global and local attention to discern intricate patterns within textual data.This approach significantly improves efficiency and accuracy by segmenting scanned email content into smaller,independently evaluated components.The model underwent training and validation using four publicly available benchmark datasets,achieving an impressive average accuracy of 98.87%,outperforming leading methods in the field.These findings underscore the resilience and scalability of DaC-GANSAEBF,positioning it as a viable solution for contemporary spam detection systems.The framework can be easily integrated into existing technologies to enhance user security and reduce the risks associated with spam.
基金funded by the Deanship of Scientific Research(DSR)at King Abdulaziz University,Jeddah,Saudi Arabia under Grant No.(GPIP:1055-829-2024).
文摘A healthy brain is vital to every person since the brain controls every movement and emotion.Sometimes,some brain cells grow unexpectedly to be uncontrollable and cancerous.These cancerous cells are called brain tumors.For diagnosed patients,their lives depend mainly on the early diagnosis of these tumors to provide suitable treatment plans.Nowadays,Physicians and radiologists rely on Magnetic Resonance Imaging(MRI)pictures for their clinical evaluations of brain tumors.These evaluations are time-consuming,expensive,and require expertise with high skills to provide an accurate diagnosis.Scholars and industrials have recently partnered to implement automatic solutions to diagnose the disease with high accuracy.Due to their accuracy,some of these solutions depend on deep-learning(DL)methodologies.These techniques have become important due to their roles in the diagnosis process,which includes identification and classification.Therefore,there is a need for a solid and robust approach based on a deep-learning method to diagnose brain tumors.The purpose of this study is to develop an intelligent automatic framework for brain tumor diagnosis.The proposed solution is based on a novel dense dynamic residual self-attention transfer adaptive learning fusion approach(NDDRSATALFA),carried over two implemented deep-learning networks:VGG19 and UNET to identify and classify brain tumors.In addition,this solution applies a transfer learning approach to exchange extracted features and data within the two neural networks.The presented framework is trained,validated,and tested on six public datasets of MRIs to detect brain tumors and categorize these tumors into three suitable classes,which are glioma,meningioma,and pituitary.The proposed framework yielded remarkable findings on variously evaluated performance indicators:99.32%accuracy,98.74%sensitivity,98.89%specificity,99.01%Dice,98.93%Area Under the Curve(AUC),and 99.81%F1-score.In addition,a comparative analysis with recent state-of-the-art methods was performed and according to the comparative analysis,NDDRSATALFA shows an admirable level of reliability in simplifying the timely identification of diverse brain tumors.Moreover,this framework can be applied by healthcare providers to assist radiologists,pathologists,and physicians in their evaluations.The attained outcomes open doors for advanced automatic solutions that improve clinical evaluations and provide reasonable treatment plans.
基金extend their appreciation to the King Salman Center for Disability Research for funding this work through Research Group No.KSRG-2024-223.
文摘Epilepsy is a long-term neurological condition marked by recurrent seizures,which result from abnormal electrical activity in the brain that disrupts its normal functioning.Traditional methods for detecting epilepsy through machine learning typically utilize discrete-time models,which inadequately represent the continuous dynamics of electroencephalogram(EEG)signals.To overcome this limitation,we introduce an innovative approach that employs Neural Ordinary Differential Equations(NODEs)to model EEG signals as continuous-time systems.This allows for effective management of irregular sampling and intricate temporal patterns.In contrast to conventional techniques,such as Convolutional Neural Networks(CNNs)and Recurrent Neural Networks(RNNs),which necessitate fixedlength inputs and often struggle with long-term dependencies,our framework incorporates:(1)a NODE block to capture continuous-time EEG dynamics,(2)a feature extraction module tailored for seizure-specific patterns,and(3)an attention-based fusion mechanism to enhance interpretability in classification.When evaluated on three publicly accessible EEG datasets,including those from Boston Children’s Hospital and the Massachusetts Institute of Technology(CHB-MIT)and the Temple University Hospital(TUH)EEG Corpus,the model demonstrated an average accuracy of 98.2%,a sensitivity of 97.8%,a specificity of 98.3%,and an F1-score of 97.9%.Additionally,the inference latency was reduced by approximately 30%compared to standard CNN and Long Short-Term Memory(LSTM)architectures,making it well-suited for real-time applications.The method’s resilience to noise and its adaptability to irregular sampling enhance its potential for clinical use in real-time settings.
基金The authors gratefully acknowledge the approval and the support of this research study by Grant No.ENGA-2022-11-1469 from the Deanship of Scientific Research at Northern Border University,Arar,KSA.
文摘A brain tumor is an excessive development of abnormal and uncontrolled cells in the brain.This growth is considered deadly since it may cause death.The brain controls numerous functions,such as memory,vision,and emotions.Due to the location,size,and shape of these tumors,their detection is a challenging and complex task.Several efforts have been conducted toward improved detection and yielded promising results and outcomes.However,the accuracy should be higher than what has been reached.This paper presents a method to detect brain tumors with high accuracy.The method works using an image segmentation technique and a classifier in MATLAB.The utilized classifier is a SupportVector Machine(SVM).DiscreteWavelet Transform(DWT)and Principal Component Analysis(PCA)are also involved.A dataset from the Kaggle website is used to test the developed approach.The obtained results reached nearly 99.2%of accuracy.The paper provides a confusion matrix of applying the proposed approach to testing images and a comparative evaluation between the developed method and some works in the literature.This evaluation shows that the presented system outperforms other approaches regarding the accuracy,precision,and recall.This research discovered that the developed method is extremely useful in detecting brain tumors,given the high accuracy,precision,and recall results.The proposed system directs us to believe that bringing this kind of technology to physicians diagnosing brain tumors is crucial.
文摘According to the World Health Organization(WHO),Brain Tumors(BrT)have a high rate of mortality across the world.The mortality rate,however,decreases with early diagnosis.Brain images,Computed Tomography(CT)scans,Magnetic Resonance Imaging scans(MRIs),segmentation,analysis,and evaluation make up the critical tools and steps used to diagnose brain cancer in its early stages.For physicians,diagnosis can be challenging and time-consuming,especially for those with little expertise.As technology advances,Artificial Intelligence(AI)has been used in various domains as a diagnostic tool and offers promising outcomes.Deep-learning techniques are especially useful and have achieved exquisite results.This study proposes a new Computer-Aided Diagnosis(CAD)system to recognize and distinguish between tumors and non-tumor tissues using a newly developed middleware to integrate two deep-learning technologies to segment brain MRI scans and classify any discovered tumors.The segmentation mechanism is used to determine the shape,area,diameter,and outline of any tumors,while the classification mechanism categorizes the type of cancer as slow-growing or aggressive.The main goal is to diagnose tumors early and to support the work of physicians.The proposed system integrates a Convolutional Neural Network(CNN),VGG-19,and Long Short-Term Memory Networks(LSTMs).A middleware framework is developed to perform the integration process and allow the system to collect the required data for the classification of tumors.Numerous experiments have been conducted on different five datasets to evaluate the presented system.These experiments reveal that the system achieves 97.98%average accuracy when the segmentation and classification functions were utilized,demonstrating that the proposed system is a powerful and valuable method to diagnose BrT early using MRI images.In addition,the system can be deployed in medical facilities to support and assist physicians to provide an early diagnosis to save patients’lives and avoid the high cost of treatments.
基金The authors extend their appreciation to the Deanship of Scientific Research at Northern Border University,Arar,KSA for funding this research work through the project number“NBU-FFR-2023-0009”.
文摘More than 500,000 patients are diagnosed with breast cancer annually.Authorities worldwide reported a death rate of 11.6%in 2018.Breast tumors are considered a fatal disease and primarily affect middle-aged women.Various approaches to identify and classify the disease using different technologies,such as deep learning and image segmentation,have been developed.Some of these methods reach 99%accuracy.However,boosting accuracy remains highly important as patients’lives depend on early diagnosis and specified treatment plans.This paper presents a fully computerized method to detect and categorize tumor masses in the breast using two deep-learning models and a classifier on different datasets.This method specifically uses ResNet50 and AlexNet,convolutional neural networks(CNNs),for deep learning and a K-Nearest-Neighbor(KNN)algorithm to classify data.Various experiments have been conducted on five datasets:the Mammographic Image Analysis Society(MIAS),Breast Cancer Histopathological Annotation and Diagnosis(BreCaHAD),King Abdulaziz University Breast Cancer Mammogram Dataset(KAU-BCMD),Breast Histopathology Images(BHI),and Breast Cancer Histopathological Image Classification(BreakHis).These datasets were used to train,validate,and test the presented method.The obtained results achieved an average of 99.38%accuracy,surpassing other models.Essential performance quantities,including precision,recall,specificity,and F-score,reached 99.71%,99.46%,98.08%,and 99.67%,respectively.These outcomes indicate that the presented method offers essential aid to pathologists diagnosing breast cancer.This study suggests using the implemented algorithm to support physicians in analyzing breast cancer correctly.
基金The authors would like to confirm that this research work was funded by Institutional Fund Projects under Grant No.(IFPIP:646-829-1443)。
文摘Lung cancer is the leading cause of cancer-related death around the globe.The treatment and survival rates among lung cancer patients are significantly impacted by early diagnosis.Most diagnostic techniques can identify and classify only one type of lung cancer.It is crucial to close this gap with a system that detects all lung cancer types.This paper proposes an intelligent decision support system for this purpose.This system aims to support the quick and early detection and classification of all lung cancer types and subtypes to improve treatment and save lives.Its algorithm uses a Convolutional Neural Network(CNN)tool to perform deep learning and a Random Forest Algorithm(RFA)to help classify the type of cancer present using several extracted features,including histograms and energy.Numerous simulation experiments were conducted on MATLAB,evidencing that this system achieves 98.7%accuracy and over 98%precision and recall.A comparative assessment assessing accuracy,recall,precision,specificity,and F-score between the proposed algorithm and works from the literature shows that the proposed system in this study outperforms existing methods in all considered metrics.This study found that using CNNs and RFAs is highly effective in detecting lung cancer,given the high accuracy,precision,and recall results.These results lead us to believe that bringing this kind of technology to doctors diagnosing lung cancer is critical.
基金This research work was funded by the Institutional Fund Projects under Grant No.(IFPIP:959-611-1443)The authors gratefully acknowledge the technical and financial support provided by the Ministry of Education and King Abdulaziz University,DSR,Jeddah,Saudi Arabia.
文摘Data mining and analytics involve inspecting and modeling large pre-existing datasets to discover decision-making information.Precision agriculture uses datamining to advance agricultural developments.Many farmers aren’t getting the most out of their land because they don’t use precision agriculture.They harvest crops without a well-planned recommendation system.Future crop production is calculated by combining environmental conditions and management behavior,yielding numerical and categorical data.Most existing research still needs to address data preprocessing and crop categorization/classification.Furthermore,statistical analysis receives less attention,despite producing more accurate and valid results.The study was conducted on a dataset about Karnataka state,India,with crops of eight parameters taken into account,namely the minimum amount of fertilizers required,such as nitrogen,phosphorus,potassium,and pH values.The research considers rainfall,season,soil type,and temperature parameters to provide precise cultivation recommendations for high productivity.The presented algorithm converts discrete numerals to factors first,then reduces levels.Second,the algorithm generates six datasets,two fromCase-1(dataset withmany numeric variables),two from Case-2(dataset with many categorical variables),and one from Case-3(dataset with reduced factor variables).Finally,the algorithm outputs a class membership allocation based on an extended version of the K-means partitioning method with lambda estimation.The presented work produces mixed-type datasets with precisely categorized crops by organizing data based on environmental conditions,soil nutrients,and geo-location.Finally,the prepared dataset solves the classification problem,leading to a model evaluation that selects the best dataset for precise crop prediction.
基金This research work was funded by Institutional Fund Projects under Grant No.(IFPIP:707-829-1443)The authors gratefully acknowledge technical and financial support provided by theMinistry of Education and King Abdulaziz University,DSR,Jeddah,Saudi Arabia.
文摘Due to excessive car usage,pollution and traffic have increased.In urban cities in Saudi Arabia,such as Riyadh and Jeddah,drivers and air quality suffer from traffic congestion.Although the government has implemented numerous solutions to resolve this issue or reduce its effect on the environment and residents,it still exists and is getting worse.This paper proposes an intelligent,adaptive,practical,and feasible deep learning method for intelligent traffic control.It uses an Internet of Things(IoT)sensor,a camera,and a Convolutional Neural Network(CNN)tool to control traffic in real time.An image segmentation algorithm analyzes inputs from the cameras installed in designated areas.This study considered whether CNNs and IoT technologies could ensure smooth traffic flow in high-speed,high-congestion situations.The presented algorithm calculates traffic density and cars’speeds to determine which lane gets high priority first.A real case study has been conducted on MATLAB to verify and validate the results of this approach.This algorithm estimates the reduced average waiting time during the red light and the suggested time for the green and red lights.An assessment between some literature works and the presented algorithm is also provided.In contrast to traditional traffic management methods,this intelligent and adaptive algorithm reduces traffic congestion,automobile waiting times,and accidents.