提出基于强化学习三态组合长短时记忆神经网络(reinforcement learning 3-states combined long and short time memory neural network,简称RL-3S-LSTMNN)的旋转机械状态退化趋势预测新方法。笔者提出的RL-3SLSTMNN中,采用最小二乘线...提出基于强化学习三态组合长短时记忆神经网络(reinforcement learning 3-states combined long and short time memory neural network,简称RL-3S-LSTMNN)的旋转机械状态退化趋势预测新方法。笔者提出的RL-3SLSTMNN中,采用最小二乘线性回归方法构造单调趋势识别器,将旋转机械整体的状态退化趋势分为平稳、下降、上升3种单调的趋势单元,并通过强化学习为每一种单调趋势单元选择一种隐层层数和隐层节点数与之相适应的长短时记忆神经网络,提高了RL-3S-LSTMNN的泛化性能和非线性逼近能力,使所提出的状态退化趋势预测方法具有较高的预测精度。用不同隐层数、隐层节点数和3种单调趋势单元分别表示Q表的动作和状态,并将长短时记忆神经网络(long and short time memory neural network,简称LSTMNN)输出误差与Q表的更新相关联,避免了决策函数的盲目搜索。结果表明:提高了RL-3S-LSTMNN的收敛速率,使所提出的预测方法具有较高的计算效率;滚动轴承状态退化趋势预测实例验证了该方法的有效性。展开更多
针对滚动轴承实际变工况条件使得新工况样本的类标签很难甚至无法获取,导致故障诊断准确率较低的问题,提出基于类间排斥松弛判别迁移学习(inter-class repulsive slack discriminant transfer learning,IRSDTL)的故障诊断方法。在提出的...针对滚动轴承实际变工况条件使得新工况样本的类标签很难甚至无法获取,导致故障诊断准确率较低的问题,提出基于类间排斥松弛判别迁移学习(inter-class repulsive slack discriminant transfer learning,IRSDTL)的故障诊断方法。在提出的IRSDTL方法中,首先,构造非负扩展松弛矩阵,将严格二进制标签矩阵转化为扩展松弛标签矩阵,增加辅助域中不同类标签向量之间的距离,同时使公共子空间维数不再局限于类标签的数量,进而减少辅助域分类误差,提高IRSDTL方法的泛化能力;其次,引入联合分布差异,减小辅助域和目标域之间的差异,以更好地实现两域的跨域迁移学习;然后,构造类间排斥力项来增大两域中某类标签子域样本到其他类标签子域样本之间的距离,以促进类判别学习;最后,采用交替方向乘子法(alternating direction multiplier,ADM)对IRSDTL的整体框架进行优化,便捷地得到IRSDTL参数的最优解。根据以上步骤,IRSDTL方法能在新工况样本的类标签不存在的情况下,仅利用历史工况中的有标签样本对新工况待测样本进行较高准确率的类判别。滚动轴承故障诊断实验结果表明:所提出的基于IRSDTL的故障诊断方法具有比其他4种迁移方法更高的故障诊断准确率;同时,所提出的方法将3类故障误诊为正常状态和将正常状态误诊为3类故障的误诊率都很低,从而验证了所提出方法的有效性和实用性。展开更多
针对振动能量收集电路整流二极管损耗大、非线性电路控制复杂以及优化负载不高的问题,提出了大负载高功率振动能量收集同步整流与电荷提取方法。通过同步电感翻转电压提高整流电压,采用短时能量提取缩短整流器件导通时间,减小能量损耗,...针对振动能量收集电路整流二极管损耗大、非线性电路控制复杂以及优化负载不高的问题,提出了大负载高功率振动能量收集同步整流与电荷提取方法。通过同步电感翻转电压提高整流电压,采用短时能量提取缩短整流器件导通时间,减小能量损耗,实现高功率能量收集。基于压电等效模型设计了自供电同步整流与电荷提取电路(self-powered synchronous rectification and electric charge extraction,简称SP-SREE),对一个振动周期电路各工作阶段进行分析,推导出SP-SREE电路理论收集功率,并对电路进行功能测试和负载功率特性测试。理论分析与实验对比表明,所提出的方法在大负载下具有更高的收集功率,可为机械振动无线传感器网络等能源受限场景下自供电提供重要参考。展开更多
文摘提出基于强化学习三态组合长短时记忆神经网络(reinforcement learning 3-states combined long and short time memory neural network,简称RL-3S-LSTMNN)的旋转机械状态退化趋势预测新方法。笔者提出的RL-3SLSTMNN中,采用最小二乘线性回归方法构造单调趋势识别器,将旋转机械整体的状态退化趋势分为平稳、下降、上升3种单调的趋势单元,并通过强化学习为每一种单调趋势单元选择一种隐层层数和隐层节点数与之相适应的长短时记忆神经网络,提高了RL-3S-LSTMNN的泛化性能和非线性逼近能力,使所提出的状态退化趋势预测方法具有较高的预测精度。用不同隐层数、隐层节点数和3种单调趋势单元分别表示Q表的动作和状态,并将长短时记忆神经网络(long and short time memory neural network,简称LSTMNN)输出误差与Q表的更新相关联,避免了决策函数的盲目搜索。结果表明:提高了RL-3S-LSTMNN的收敛速率,使所提出的预测方法具有较高的计算效率;滚动轴承状态退化趋势预测实例验证了该方法的有效性。
文摘针对滚动轴承实际变工况条件使得新工况样本的类标签很难甚至无法获取,导致故障诊断准确率较低的问题,提出基于类间排斥松弛判别迁移学习(inter-class repulsive slack discriminant transfer learning,IRSDTL)的故障诊断方法。在提出的IRSDTL方法中,首先,构造非负扩展松弛矩阵,将严格二进制标签矩阵转化为扩展松弛标签矩阵,增加辅助域中不同类标签向量之间的距离,同时使公共子空间维数不再局限于类标签的数量,进而减少辅助域分类误差,提高IRSDTL方法的泛化能力;其次,引入联合分布差异,减小辅助域和目标域之间的差异,以更好地实现两域的跨域迁移学习;然后,构造类间排斥力项来增大两域中某类标签子域样本到其他类标签子域样本之间的距离,以促进类判别学习;最后,采用交替方向乘子法(alternating direction multiplier,ADM)对IRSDTL的整体框架进行优化,便捷地得到IRSDTL参数的最优解。根据以上步骤,IRSDTL方法能在新工况样本的类标签不存在的情况下,仅利用历史工况中的有标签样本对新工况待测样本进行较高准确率的类判别。滚动轴承故障诊断实验结果表明:所提出的基于IRSDTL的故障诊断方法具有比其他4种迁移方法更高的故障诊断准确率;同时,所提出的方法将3类故障误诊为正常状态和将正常状态误诊为3类故障的误诊率都很低,从而验证了所提出方法的有效性和实用性。
文摘针对振动能量收集电路整流二极管损耗大、非线性电路控制复杂以及优化负载不高的问题,提出了大负载高功率振动能量收集同步整流与电荷提取方法。通过同步电感翻转电压提高整流电压,采用短时能量提取缩短整流器件导通时间,减小能量损耗,实现高功率能量收集。基于压电等效模型设计了自供电同步整流与电荷提取电路(self-powered synchronous rectification and electric charge extraction,简称SP-SREE),对一个振动周期电路各工作阶段进行分析,推导出SP-SREE电路理论收集功率,并对电路进行功能测试和负载功率特性测试。理论分析与实验对比表明,所提出的方法在大负载下具有更高的收集功率,可为机械振动无线传感器网络等能源受限场景下自供电提供重要参考。