L1_(2)-strengthened high-entropy alloys(HEAs)are promising materials for advanced structural applications in harsh environments due to their outstanding mechanical properties.However,the Cr-depleted L1_(2)par-ticles u...L1_(2)-strengthened high-entropy alloys(HEAs)are promising materials for advanced structural applications in harsh environments due to their outstanding mechanical properties.However,the Cr-depleted L1_(2)par-ticles usually increase the alloy’s galvanic corrosion susceptibility,thus resulting in a decrease in pit-ting resistance.In this work,the corrosion behavior and associated passive film characteristics of a novel Co_(40)Cr_(20)Ni_(30)Al_(5)Ti_(5)HEA(at.%)additively manufactured by selective laser melting(SLM)were systemat-ically characterized and investigated.It was found that the precipitation of coherent nano-lamellar L1_(2)phase significantly refined the grain structure of the aged alloy,which leads to an anomalously improved corrosion resistance compared to the as-printed single-phase counterpart.Such excellent corrosion resis-tance of the aged alloy originated from the thin amorphous passive film with Cr_(2)O_(3),Al_(2)O_(3),and TiO_(2)as the main constituents that were firmly adhered to the alloy matrix.Moreover,the corrosion morphologies revealed that the dense and large-sized pits on the as-printed alloy were in sharp contrast to the sparse and irregularly-shaped pits on the aged alloy,which can be attributed to the potential difference and/or the refined grain structure.These findings will effectively advance the development of corrosion-resistant additively manufactured alloys and provide new insights into the innovative design of high-performance damage-tolerant L1_(2)-strengthened HEAs.展开更多
Diffusion bonding(DB)with interlayers is sought-after for manufacturing high-performance turbine disks of powder metallurgy(PM)superalloys with precise and intricate inner cavity structures.Developing novel interlayer...Diffusion bonding(DB)with interlayers is sought-after for manufacturing high-performance turbine disks of powder metallurgy(PM)superalloys with precise and intricate inner cavity structures.Developing novel interlayer materials is challenging but crucial for enhancing bonding quality and joint properties.We designed a multi-interlayer composite bonding(MICB)method,employing sandwich-structured inter-layers of"BNi2/high entropy alloy(HEA)/BNi2",to join a PM superalloy FGH98.The MICB joint exhibited an ultrahigh shear strength of~1132 MPa and exceptional ductility,indicating a typical ductile fracture pattern with numerous dimples.Owing to the introduction of liquid BNi2 interlayer,initial bonding in-terfaces were eliminated and replaced by newborn grain boundaries(GBs),preventing brittle interfacial fracture.Due to the diffusion of Al/Ti/Ta from the base metals(BMs),massive orderedγ'nanoparticles also precipitated in the joint.Moreover,the addition of HEA foil reduced the stacking fault energy(SFE)of the joint and facilitated the formation of deformation twins(DTs).Thus,during the deformation process,theγ'nanoparticles,and multiple substructures like stacking faults(SFs),Lomer-Cottrell(L-C)locks,DTs,and 9R phases enhanced the work-hardening capability and strengthened the joint.Simultaneously,the multiplication and interaction of DTs induced a softening mechanism of dynamic recrystallization(DRX)during the entire deformation process and dominated when the plastic instability occurred,resulting in numerous adiabatic shear bands(ASBs)consisting ofγ/γ'nano-bands,which indicates a significant im-provement of the joint ductility.展开更多
The precipitate morphologies,coarsening kinetics,elemental partitioning behaviors,grain structures,and tensile properties were explored in detail for L1_(2)-strengthened Ni_(39.9)Co_(20)Fe_(15)Cr_(15)Al_(6)Ti_(4-x)Nb_...The precipitate morphologies,coarsening kinetics,elemental partitioning behaviors,grain structures,and tensile properties were explored in detail for L1_(2)-strengthened Ni_(39.9)Co_(20)Fe_(15)Cr_(15)Al_(6)Ti_(4-x)Nb_(x)B_(0.1)(x=0 at.%,2 at.%,and 4 at.%)high-entropy alloys(HEAs).By substituting Ti with Nb,the spheroidal-to-cuboidal precipitate morphological transition,increase in the coarsening kinetics,and phase decomposition upon aging at 800°C occurred.The excessive addition of Nb brings about the grain boundary precipitation of an Nb-rich phase along with the phase decomposition from the L1_(2)to lamellar-structured D019 phase upon the long-term aging duration.By partially substituting Ti with Nb,the chemically complex and thermally stable L12 phase with a composition of(Ni_(58.8)Co_(9.8)Fe_(2.7))(Al_(12.7)Ti_(5.8)Nb_(7.5)Cr_(2.3))ensures the stable phase structure and clean grain boundaries,which guarantees the superb high-temperature mechanical properties(791±7 MPa for yielding and 1013±11 MPa for failure)at 700℃.Stacking faults(SFs)were observed to prevail during the plastic deformation,offering a high work-hardening capability at 700°C.An anomalous rise in the yield strength at 800℃was found,which could be ascribed to the multi-layered super-partial dislocations with a cross-slip configuration within the L1_(2)particles.展开更多
Laser powder bed fusion(LPBF)yields unique advantages during the fabrication of titanium alloys.In the present work,Ti-6.5 Al-3.5 Mo-1.5 Zr-0.3 Si alloy specimens with excellent mechanical performances were fabricated...Laser powder bed fusion(LPBF)yields unique advantages during the fabrication of titanium alloys.In the present work,Ti-6.5 Al-3.5 Mo-1.5 Zr-0.3 Si alloy specimens with excellent mechanical performances were fabricated by LPBF.The as-built specimens displayed relatively high strength and ductility under modest volume energy densities(VEDs),whereas they manifested high strength with low ductility under high VEDs.To investigate the key reason of this phenomenon,the specimens were designed with two VEDs ranges of 60 J/mm^(3) and 85 J/mm^(3).Special attention was paid to the influences of residual stress and micro-deformation on microstructures and mechanical properties for the first time.The results indicated that the residual stresses and relative density of the 60 J/mm^(3) range specimens were higher than that of the 85 J/mm3 range specimens.Dislocation multiplication and dislocation movement promoted by the residual stress were hindered by the initialα’phase grain boundary(prior-α’GB),leading to the formation ofα’metastable structures.The mean tensile strength and elongation of the 60 J/mm^(3) range specimens were 1248.1 MPa and 12.3%,respectively,whereas the corresponding values for the 85 J/mm^(3) range specimens were 1405.3 MPa,5.0%,respectively.During deformation,the strength and ductility of the specimens were first improved by lamellar structures generated from prior-α’phases,and then effectively enhanced by the interaction between the{10–12}twins and dislocations.However,pores significantly reduced the ductility;hence,high VED specimens with large twins and numerous large pores increased the strength and reduce the ductility.展开更多
L12-strengthened high entropy alloys(HEAs)with excellent room and high-temperature mechanical prop-erties have been proposed as promising candidates as structural materials for advanced nuclear systems.However,knowled...L12-strengthened high entropy alloys(HEAs)with excellent room and high-temperature mechanical prop-erties have been proposed as promising candidates as structural materials for advanced nuclear systems.However,knowledge about their radiation response is fairly limited.In the present work,a novel HEA with a high density of L12 nanoparticles was irradiated with He ion at 500°C.Transmission electron microscope(TEM)and atom probe tomography(APT)were employed to study the evolution of mi-crostructural stability and radiation-induced segregation.Similar to the single-phase FeCoNiCr HEA,the main microstructural features were numerous large faulted dislocation loops and helium bubbles.While the irradiation resistance of the present L12-strengthened HEA is much improved in terms of reduced bubble size,which could be attributed to the considerable He trapping efficiency of the coherent pre-cipitate/matrix interface and the enhanced capability of the interface for damage elimination when the matrix channel width is narrow.APT analysis revealed that an inverse-Kirkendall-mechanism-dominated radiation-induced segregation(RIS)occurs around bubbles,where a significant Co enrichment and Ni de-pletion can be clearly observed.In addition,the competing dynamics of ballistic mixing and elemental clustering that raised from the irradiation-enhanced diffusion in a highly supersaturated matrix,along with the low precipitation nucleation barrier due to the small lattice misfit,lead to a dynamical pre-cipitation dissolution and re-precipitation appears under irradiation.Such a promising phenomenon is expected to promote a potential self-healing effect and could in turn provide a sustainable irradiation tolerance over the operational lifetime of a reactor.展开更多
(FePt/Ag)n nano-multilayers were deposited on MgO (100) single crystal with laser ablation and then subjected to annealing. FePt L1o grains with (001) texture and thus a large perpendicular magnetic anisotropy constan...(FePt/Ag)n nano-multilayers were deposited on MgO (100) single crystal with laser ablation and then subjected to annealing. FePt L1o grains with (001) texture and thus a large perpendicular magnetic anisotropy constant Ku of the order of 106 J/m3 were formed. A thick Ag layer is found to be favorable for decreasing the dispersion of the easy axis for magnetization. The measurement of time decay of magnetization gave rise to a small activation volume of the order of 10-25m3, showing the promising of being the recording medium for future high density perpendicular recording.展开更多
AIM : One of the primary mechanisms by which neurons regulate their excitability is through of ion channel phosphorylafion. Compounds that increase noeiceptor excitability can cause hyporalgesia or allodynia whereas c...AIM : One of the primary mechanisms by which neurons regulate their excitability is through of ion channel phosphorylafion. Compounds that increase noeiceptor excitability can cause hyporalgesia or allodynia whereas compounds that decrease noeiceptor excitability can be used as analgesics to relieve pain arising from inflammation or trauma. METHODS:展开更多
AIM: Nociceptors contain a variety of ion channels that are modulated by proinflammatory mediators that may arise from tissue or nerve injury. The changes in activity of these channels, which primarily occurs through ...AIM: Nociceptors contain a variety of ion channels that are modulated by proinflammatory mediators that may arise from tissue or nerve injury. The changes in activity of these channels, which primarily occurs through changes in intracellular pathways, may lead to the pathological states of hyperalgesia and allodynia. METHODS &RESULTS:展开更多
It is impossible to directly analyze the microstructure of spin-valve multilayers based on Ni,F,Cu and Mn by a conventional X-ray diffraction technique because the lattice parameter and atomic sattering factor sof the...It is impossible to directly analyze the microstructure of spin-valve multilayers based on Ni,F,Cu and Mn by a conventional X-ray diffraction technique because the lattice parameter and atomic sattering factor sof them are very close.To solve this problem, we use an x-ray anomalous diffraction technique to characterize the microstructures of the [Ni80Fe20/Fe50Mn50]15 and [Ni80Fe20/Cu]15 superlattice systems.The results show that more diffraction peaks and higher internsity in the reflectivety profile are observed when the incident energy is close to the absorption edge of the lighter element(Mn) in [Ni80Fe20/Fe50Mn50]15 multilayer systems and to the absorption edge of the heavier element (Cu) in the [Ni80Fe20/Cu]15 multilayer systems.The interface and periodic structure of [Ni80F20/Fe50Mn50]15 are more perfect than that of the [Ni80Fe20/Cu]15 superlattices.The above results are disussed in this paper.展开更多
By analyzing ψ(3686) data sample containing (107.7±0.6)×10^(6) events taken with the BESIII detector at the BEPCII storage ring in 2009,the χ_(c 0) resonance parameters are precisely measured using χ_(c 0...By analyzing ψ(3686) data sample containing (107.7±0.6)×10^(6) events taken with the BESIII detector at the BEPCII storage ring in 2009,the χ_(c 0) resonance parameters are precisely measured using χ_(c 0,c 2)→π^(+)π^(−)/K^(+)K^(−) events.The mass of χ_(c 0) is determined to be M (χ_(c 0))=(3415.63±0.07±0.07±0.07)MeV/c^(2),and its full width is F (χ_(c 0))=(12.52±0.12±0.13)MeV,where the first uncertainty is statistical,the second systematic,and the third for mass comes from χ_(c 2) mass uncertainty.These measurements improve the precision of χ_(c 0) mass by a factor of four and width by one order of magnitude over the previous individual measurements,and significantly boost our knowledge about the charmonium spectrum.Together with additional (345.4±2.6)×10^(6)(3686) data events taken in 2012,the decay branching fractions of χ_(c 0,c 2)→π^(+)π^(−)/K^(+)K^(−) are measured as well,with precision improved by a factor of three compared to previous measurements.These χ_(c 0) decay branching fractions provide important inputs for the study of glueballs.展开更多
Using 20.3 fb^(-1)of e^(+)e^(-)annihilation data collected at a center-of-mass energy of 3.773 GeV with the BESⅢdetector,we report on an improved search for the radiative leptonic decay D^(+)→γe^(+)ve.An upper limi...Using 20.3 fb^(-1)of e^(+)e^(-)annihilation data collected at a center-of-mass energy of 3.773 GeV with the BESⅢdetector,we report on an improved search for the radiative leptonic decay D^(+)→γe^(+)ve.An upper limit on its partial branching fraction for photon energies E_(γ)>10 MeV was determined to be 1.2×10^(-5)at a 90%confidence level;this excludes most current theoretical predictions.A sophisticated deep learning approach,which includes thorough validation and is based on the Transformer architecture,was implemented to efficiently distinguish the signal from massive backgrounds.展开更多
Using an electron-positron collision data sample corresponding to(1.0087±0.0044)×10^(10)events collected using the BESIII detector at the BEPCII collider,we firstly search for the lepton number violation de...Using an electron-positron collision data sample corresponding to(1.0087±0.0044)×10^(10)events collected using the BESIII detector at the BEPCII collider,we firstly search for the lepton number violation decayφ→π^(+)π^(+)e^(-)e^(-)via J/ψ→φη.No obviously signals are found.The upper limit on the branching fraction ofφ→π^(+)π^(+)e^(-)e^(-)is set to be 1.3×10^(-5)at the 90%confidence level.展开更多
Based on a sample of 2.7x 10^(9)ψ(3686)events collected by the BESIII detector operating at the BEP-CII collider,the decay 4(3686)→YX_(cJ),X_(cJ)→ηηη’is analyzed.The decay modes X_(c1)and X_(c2)→ηηη’are ob...Based on a sample of 2.7x 10^(9)ψ(3686)events collected by the BESIII detector operating at the BEP-CII collider,the decay 4(3686)→YX_(cJ),X_(cJ)→ηηη’is analyzed.The decay modes X_(c1)and X_(c2)→ηηη’are observed for the first time,and their corresponding branching fractions are determined to be B(X_(c1)→ηηη’)=(1.40±0.13(stat.)±0.09(sys.))×10^(-4)and B(X_(c2)→ηηη’)=(4.18±0.84(stat.)±0.48(sys.))×10^(-5).An upper limit on the branching fraction of x_(co)→ηηη’is set as 2.59×10^(-5)at a 90%confidence level(CL).A partial wave analys-is(PWA)of the decay X_(c1)→ηηη’is performed to search for the 1^(-+)exotic stateη1(1855).The PWA result indic-ates that the structure in theηη’mass spectrum is attributed to f_(0)(1500),while in the m mass spectrum,it is attrib-uted to the 0^(++)phase space.The upper limit of B(x_(cl)→η1(1855)η)·B(η1(1855)→ηη')<9.79×10^(-5)is set based on the PWA at 90%CL.展开更多
Lepton number violation decayω→π^(+)π^(+)e^(-)e^(-)+c.c.is searched for via J/ψ→ωηusing a data sample of(1.0087±0.0044)×10^(10)J/ψevents collected via the BESIII detector at the BEPCII collider.No s...Lepton number violation decayω→π^(+)π^(+)e^(-)e^(-)+c.c.is searched for via J/ψ→ωηusing a data sample of(1.0087±0.0044)×10^(10)J/ψevents collected via the BESIII detector at the BEPCII collider.No significant signal is observed,and the upper limit on the branching fraction ofω→π^(+)π^(+)e^(-)e^(-)+c.c.at the 90%confidence level is determined for the first time to be 2.8×10^(-6).展开更多
We search for the leptonic decay D^(+)→e^(+)ν_(e)using an e+e-collision data sample with an integrated luminosity of 20.3 fb-1collected with the BESIII detector at a center-of-mass energy of 3.773 GeV.Significant si...We search for the leptonic decay D^(+)→e^(+)ν_(e)using an e+e-collision data sample with an integrated luminosity of 20.3 fb-1collected with the BESIII detector at a center-of-mass energy of 3.773 GeV.Significant signal is not observed,and an upper limit on the branching fraction of D^(+)→e^(+)ν_(e)is set as 9.7×10^(-7),at a confidence level of 90%.Our upper limit is an order of magnitude smaller than the previous limit for this decay mode.展开更多
Utilizing 4.5 fb^(-1)ofe^(+)e^(-)annihilation data collected at center-of-mass energies ranging from 4599.53 MeV to 4698.82 MeV by the BESIII detector at the BEPCII collider,we searched for singly Cabibbo-suppressed h...Utilizing 4.5 fb^(-1)ofe^(+)e^(-)annihilation data collected at center-of-mass energies ranging from 4599.53 MeV to 4698.82 MeV by the BESIII detector at the BEPCII collider,we searched for singly Cabibbo-suppressed hadronic decaysΛ_(c)^(+)→Σ^(0)K^(+)π^(0)andΛ_(c)^(+)→Σ^(0)K^(+)π^(+)π^(−)and with a single-tag method.No significant signals were observed for both decays.The upper limits on the branching fractions at the 90%confidence level were determined to be 5.0×10^(-4)for and forΛ_(c)^(+)→Σ^(0)K^(+)π^(0)and 6.5×10^(-4)forΛ_(c)^(+)→Σ^(0)K^(+)π^(+)π^(−).展开更多
Using e^(+)e^(−)annihilation data corresponding to an integrated luminosity of 2.93 fb^(−1)taken at the center-of-mass energy√s=3.773 GeV with the BESIII detector,a joint amplitude analysis is performed on the decays...Using e^(+)e^(−)annihilation data corresponding to an integrated luminosity of 2.93 fb^(−1)taken at the center-of-mass energy√s=3.773 GeV with the BESIII detector,a joint amplitude analysis is performed on the decays D^(0)→π^(+)π^(−)π^(+)π^(−)and D^(0)→π^(+)π^(−)π^(0)π^(0)(non-η).The fit fractions of individual components are obtained,and large interferences among the dominant components of the decays D^(0)→a_(1)(1260)π,D^(0)→π(1300)π,D^(0)→ρ(770)ρ(770),and D^(0)→2(ππ)_(S)are observed in both channels.With the obtained amplitude model,the CP-even fractions of D^(0)→π^(+)π^(−)π^(+)π^(−)and D^(0)→π^(+)π^(−)π^(0)π^(0)(non-η)are determined to be(75.2±1.1_(stat).±1.5_(syst.))%and(68.9±1.5_(stat).±2.4_(syst.))%,respectively.The branching fractions of D^(0)→π^(+)π^(−)π^(+)π^(−)and D^(0)→π^(+)π^(−)π^(0)π^(0)(non-η)are measured to be(0.688±0.010_(stat.)±0.010_(syst.))%and(0.951±0.025_(stat.)±0.021_(syst.))%,respectively.The amplitude analysis provides an important model for the binning strategy in measuring the strong phase parameters of D^(0)→4πwhen used to determine the CKM angleγ(ϕ_(3))via the B^(−)→DK^(−)decay.展开更多
We present a measurement of the integrated luminosity of e^(+)e^(-)collision data collected by the BESIII detector at the BEPCII collider at a center-of-mass energy of Ecm=3.773 GeV.The integrated luminosities of the ...We present a measurement of the integrated luminosity of e^(+)e^(-)collision data collected by the BESIII detector at the BEPCII collider at a center-of-mass energy of Ecm=3.773 GeV.The integrated luminosities of the datasets taken from December 2021 to June 2022,from November 2022 to June 2023,and from October 2023 to February 2024 were determined to be 4.995±0.019 fb^(-1),8.157±0.031 fb^(-1),and 4.191±0.016 fb^(-1),respectively,by analyzing large angle Bhabha scattering events.The uncertainties are dominated by systematic effects,and the statistical uncertainties are negligible.Our results provide essential input for future analyses and precision measurements.展开更多
基金financial support from the Na-tional Natural Science Foundation of China(Grant Nos.52222112 and 52101135)the Guangdong Basic and Applied Basic Research Foundation(Grant No.2024A1515011220)+2 种基金the Research Grants Council of the Hong Kong Special Administrative Region,China(Grant No.CityU 11208823)the International Cooperation and Innovation Fund(Grant No.KZ8F231907)The APT research was conducted at the Inter-University 3D APT Unit of City University of Hong Kong(CityU),which is supported by the CityU grant 9360161.
文摘L1_(2)-strengthened high-entropy alloys(HEAs)are promising materials for advanced structural applications in harsh environments due to their outstanding mechanical properties.However,the Cr-depleted L1_(2)par-ticles usually increase the alloy’s galvanic corrosion susceptibility,thus resulting in a decrease in pit-ting resistance.In this work,the corrosion behavior and associated passive film characteristics of a novel Co_(40)Cr_(20)Ni_(30)Al_(5)Ti_(5)HEA(at.%)additively manufactured by selective laser melting(SLM)were systemat-ically characterized and investigated.It was found that the precipitation of coherent nano-lamellar L1_(2)phase significantly refined the grain structure of the aged alloy,which leads to an anomalously improved corrosion resistance compared to the as-printed single-phase counterpart.Such excellent corrosion resis-tance of the aged alloy originated from the thin amorphous passive film with Cr_(2)O_(3),Al_(2)O_(3),and TiO_(2)as the main constituents that were firmly adhered to the alloy matrix.Moreover,the corrosion morphologies revealed that the dense and large-sized pits on the as-printed alloy were in sharp contrast to the sparse and irregularly-shaped pits on the aged alloy,which can be attributed to the potential difference and/or the refined grain structure.These findings will effectively advance the development of corrosion-resistant additively manufactured alloys and provide new insights into the innovative design of high-performance damage-tolerant L1_(2)-strengthened HEAs.
基金support from the National Natural Science Foundation of China(Grant Nos.52075449,51975480,and 52222112)the Hong Kong Research Grant Council(RGC)(Grant No.21205621).
文摘Diffusion bonding(DB)with interlayers is sought-after for manufacturing high-performance turbine disks of powder metallurgy(PM)superalloys with precise and intricate inner cavity structures.Developing novel interlayer materials is challenging but crucial for enhancing bonding quality and joint properties.We designed a multi-interlayer composite bonding(MICB)method,employing sandwich-structured inter-layers of"BNi2/high entropy alloy(HEA)/BNi2",to join a PM superalloy FGH98.The MICB joint exhibited an ultrahigh shear strength of~1132 MPa and exceptional ductility,indicating a typical ductile fracture pattern with numerous dimples.Owing to the introduction of liquid BNi2 interlayer,initial bonding in-terfaces were eliminated and replaced by newborn grain boundaries(GBs),preventing brittle interfacial fracture.Due to the diffusion of Al/Ti/Ta from the base metals(BMs),massive orderedγ'nanoparticles also precipitated in the joint.Moreover,the addition of HEA foil reduced the stacking fault energy(SFE)of the joint and facilitated the formation of deformation twins(DTs).Thus,during the deformation process,theγ'nanoparticles,and multiple substructures like stacking faults(SFs),Lomer-Cottrell(L-C)locks,DTs,and 9R phases enhanced the work-hardening capability and strengthened the joint.Simultaneously,the multiplication and interaction of DTs induced a softening mechanism of dynamic recrystallization(DRX)during the entire deformation process and dominated when the plastic instability occurred,resulting in numerous adiabatic shear bands(ASBs)consisting ofγ/γ'nano-bands,which indicates a significant im-provement of the joint ductility.
基金financially supported by the National Natu-ral Science Foundation of Chin a(Grant Nos.52101135,52101151,and 52171162)the Hong Kong Research Grant Coun-cil,University Grants Committee(RGC)with CityU grants Nos 21205621 and15227121+2 种基金Wealso thankthefinancialsupport from the Shenzhen Science and Technology Program(Grant No.RCBS20210609103202012)PKL very much appreciates the sup-port from(1)the National Science Foundation(Nos.DMR-1611180,1809640,and 2226508)(2)the US Army Research Office(Nos.W911NF-13-1-0438 and W911NF-19-2-0049).
文摘The precipitate morphologies,coarsening kinetics,elemental partitioning behaviors,grain structures,and tensile properties were explored in detail for L1_(2)-strengthened Ni_(39.9)Co_(20)Fe_(15)Cr_(15)Al_(6)Ti_(4-x)Nb_(x)B_(0.1)(x=0 at.%,2 at.%,and 4 at.%)high-entropy alloys(HEAs).By substituting Ti with Nb,the spheroidal-to-cuboidal precipitate morphological transition,increase in the coarsening kinetics,and phase decomposition upon aging at 800°C occurred.The excessive addition of Nb brings about the grain boundary precipitation of an Nb-rich phase along with the phase decomposition from the L1_(2)to lamellar-structured D019 phase upon the long-term aging duration.By partially substituting Ti with Nb,the chemically complex and thermally stable L12 phase with a composition of(Ni_(58.8)Co_(9.8)Fe_(2.7))(Al_(12.7)Ti_(5.8)Nb_(7.5)Cr_(2.3))ensures the stable phase structure and clean grain boundaries,which guarantees the superb high-temperature mechanical properties(791±7 MPa for yielding and 1013±11 MPa for failure)at 700℃.Stacking faults(SFs)were observed to prevail during the plastic deformation,offering a high work-hardening capability at 700°C.An anomalous rise in the yield strength at 800℃was found,which could be ascribed to the multi-layered super-partial dislocations with a cross-slip configuration within the L1_(2)particles.
基金The National Key R&D Program of China(Nos.2017YFB1103000,2016YFB1100504)The National Natural Science Foundation of China(Nos.51375242)The Natural Science Foundation of Jiangsu Province(No.BK20190463)。
文摘Laser powder bed fusion(LPBF)yields unique advantages during the fabrication of titanium alloys.In the present work,Ti-6.5 Al-3.5 Mo-1.5 Zr-0.3 Si alloy specimens with excellent mechanical performances were fabricated by LPBF.The as-built specimens displayed relatively high strength and ductility under modest volume energy densities(VEDs),whereas they manifested high strength with low ductility under high VEDs.To investigate the key reason of this phenomenon,the specimens were designed with two VEDs ranges of 60 J/mm^(3) and 85 J/mm^(3).Special attention was paid to the influences of residual stress and micro-deformation on microstructures and mechanical properties for the first time.The results indicated that the residual stresses and relative density of the 60 J/mm^(3) range specimens were higher than that of the 85 J/mm3 range specimens.Dislocation multiplication and dislocation movement promoted by the residual stress were hindered by the initialα’phase grain boundary(prior-α’GB),leading to the formation ofα’metastable structures.The mean tensile strength and elongation of the 60 J/mm^(3) range specimens were 1248.1 MPa and 12.3%,respectively,whereas the corresponding values for the 85 J/mm^(3) range specimens were 1405.3 MPa,5.0%,respectively.During deformation,the strength and ductility of the specimens were first improved by lamellar structures generated from prior-α’phases,and then effectively enhanced by the interaction between the{10–12}twins and dislocations.However,pores significantly reduced the ductility;hence,high VED specimens with large twins and numerous large pores increased the strength and reduce the ductility.
文摘L12-strengthened high entropy alloys(HEAs)with excellent room and high-temperature mechanical prop-erties have been proposed as promising candidates as structural materials for advanced nuclear systems.However,knowledge about their radiation response is fairly limited.In the present work,a novel HEA with a high density of L12 nanoparticles was irradiated with He ion at 500°C.Transmission electron microscope(TEM)and atom probe tomography(APT)were employed to study the evolution of mi-crostructural stability and radiation-induced segregation.Similar to the single-phase FeCoNiCr HEA,the main microstructural features were numerous large faulted dislocation loops and helium bubbles.While the irradiation resistance of the present L12-strengthened HEA is much improved in terms of reduced bubble size,which could be attributed to the considerable He trapping efficiency of the coherent pre-cipitate/matrix interface and the enhanced capability of the interface for damage elimination when the matrix channel width is narrow.APT analysis revealed that an inverse-Kirkendall-mechanism-dominated radiation-induced segregation(RIS)occurs around bubbles,where a significant Co enrichment and Ni de-pletion can be clearly observed.In addition,the competing dynamics of ballistic mixing and elemental clustering that raised from the irradiation-enhanced diffusion in a highly supersaturated matrix,along with the low precipitation nucleation barrier due to the small lattice misfit,lead to a dynamical pre-cipitation dissolution and re-precipitation appears under irradiation.Such a promising phenomenon is expected to promote a potential self-healing effect and could in turn provide a sustainable irradiation tolerance over the operational lifetime of a reactor.
基金The present work has been partially supported by the Japanese Storage Research ConsortiumSupport by Beijing Science and Technology Nova Project(Grant No.H020821290120)is also appreciated.
文摘(FePt/Ag)n nano-multilayers were deposited on MgO (100) single crystal with laser ablation and then subjected to annealing. FePt L1o grains with (001) texture and thus a large perpendicular magnetic anisotropy constant Ku of the order of 106 J/m3 were formed. A thick Ag layer is found to be favorable for decreasing the dispersion of the easy axis for magnetization. The measurement of time decay of magnetization gave rise to a small activation volume of the order of 10-25m3, showing the promising of being the recording medium for future high density perpendicular recording.
文摘AIM : One of the primary mechanisms by which neurons regulate their excitability is through of ion channel phosphorylafion. Compounds that increase noeiceptor excitability can cause hyporalgesia or allodynia whereas compounds that decrease noeiceptor excitability can be used as analgesics to relieve pain arising from inflammation or trauma. METHODS:
文摘AIM: Nociceptors contain a variety of ion channels that are modulated by proinflammatory mediators that may arise from tissue or nerve injury. The changes in activity of these channels, which primarily occurs through changes in intracellular pathways, may lead to the pathological states of hyperalgesia and allodynia. METHODS &RESULTS:
文摘It is impossible to directly analyze the microstructure of spin-valve multilayers based on Ni,F,Cu and Mn by a conventional X-ray diffraction technique because the lattice parameter and atomic sattering factor sof them are very close.To solve this problem, we use an x-ray anomalous diffraction technique to characterize the microstructures of the [Ni80Fe20/Fe50Mn50]15 and [Ni80Fe20/Cu]15 superlattice systems.The results show that more diffraction peaks and higher internsity in the reflectivety profile are observed when the incident energy is close to the absorption edge of the lighter element(Mn) in [Ni80Fe20/Fe50Mn50]15 multilayer systems and to the absorption edge of the heavier element (Cu) in the [Ni80Fe20/Cu]15 multilayer systems.The interface and periodic structure of [Ni80F20/Fe50Mn50]15 are more perfect than that of the [Ni80Fe20/Cu]15 superlattices.The above results are disussed in this paper.
基金Supported in part by National Key R&D Program of China(2020YFA0406300,2020YFA0406400,2023YFA1606000)National Natural Science Foundation of China(NSFC)(11635010,11735014,11935015,11935016,11935018,12025502,12035009,12035013,12061131003,12192260,12192261,12192262,12192263,12192264,12192265,12221005,12225509,12235017,12361141819)+17 种基金the Chinese Academy of Sciences(CAS)Large-Scale Scientific Facility Programthe CAS Center for Excellence in Particle Physics(CCEPP)Joint Large-Scale Scientific Facility Funds of the NSFC and CAS(U1832207)100 Talents Program of CAS(ZR2022JQ02,ZR2024QA151)supported by Shandong Provincial Natural Science Foundationsupported by the China Postdoctoral Science Foundation(2023M742100)The Institute of Nuclear and Particle Physics(INPAC)and Shanghai Key Laboratory for Particle Physics and CosmologyGerman Research Foundation DFG(FOR5327,GRK 2149)Istituto Nazionale di Fisica Nucleare,ItalyKnut and Alice Wallenberg Foundation(2021.0174,2021.0299)Ministry of Development of Turkey(DPT2006K-120470)National Research Foundation of Korea(NRF-2022R1A2C1092335)National Science and Technology fund of MongoliaNational Science Research and Innovation Fund(NSRF)via the Program Management Unit for Human Resources&Institutional Development,Research and Innovation of Thailand(B16F640076,B50G670107)Polish National Science Centre(2019/35/O/ST2/02907)Swedish Research Council(2019.04595)The Swedish Foundation for International Cooperation in Research and Higher Education(CH2018-7756)U.S.Department of Energy(DE-FG02-05ER41374)。
文摘By analyzing ψ(3686) data sample containing (107.7±0.6)×10^(6) events taken with the BESIII detector at the BEPCII storage ring in 2009,the χ_(c 0) resonance parameters are precisely measured using χ_(c 0,c 2)→π^(+)π^(−)/K^(+)K^(−) events.The mass of χ_(c 0) is determined to be M (χ_(c 0))=(3415.63±0.07±0.07±0.07)MeV/c^(2),and its full width is F (χ_(c 0))=(12.52±0.12±0.13)MeV,where the first uncertainty is statistical,the second systematic,and the third for mass comes from χ_(c 2) mass uncertainty.These measurements improve the precision of χ_(c 0) mass by a factor of four and width by one order of magnitude over the previous individual measurements,and significantly boost our knowledge about the charmonium spectrum.Together with additional (345.4±2.6)×10^(6)(3686) data events taken in 2012,the decay branching fractions of χ_(c 0,c 2)→π^(+)π^(−)/K^(+)K^(−) are measured as well,with precision improved by a factor of three compared to previous measurements.These χ_(c 0) decay branching fractions provide important inputs for the study of glueballs.
基金supported in part by National Key R&D Program of China(2020YFA0406400,2023YFA1606000,2020YFA0406300)National Natural Science Foundation of China(NSFC)(11635010,11735014,11935015,11935016,11935018,12025502,12035009,12035013,12061131003,12192260,12192261,12192262,12192263,12192264,12192265,12221005,12225509,12235017,12361141819)+18 种基金the Chinese Academy of Sciences(CAS)Large-Scale Scientific Facility Programthe CAS Center for Excellence in Particle Physics(CCEPP)Joint Large-Scale Scientific Facility Funds of the NSFC and CAS(U1832207)CAS(YSBR-101)100 Talents Program of CASCAS Project for Young Scientists in Basic Research(YSBR-117)The Institute of Nuclear and Particle Physics(INPAC)and Shanghai Key Laboratory for Particle Physics and CosmologyAgencia Nacional de Investigación y Desarrollo de Chile(ANID),Chile(ANID PIA/APOYO AFB230003)German Research Foundation DFG(FOR5327)Istituto Nazionale di Fisica Nucleare,ItalyKnut and Alice Wallenberg Foundation(2021.0174,2021.0299)Ministry of Development of Turkey(DPT2006K-120470)National Research Foundation of Korea(NRF-2022R1A2C1092335)National Science and Technology fund of MongoliaNational Science Research and Innovation Fund(NSRF)via the Program Management Unit for Human Resources&Institutional Development,Research and Innovation of Thailand(B50G670107)Polish National Science Centre(2019/35/O/ST2/02907)Swedish Research Council(2019.04595)The Swedish Foundation for International Cooperation in Research and Higher Education(CH2018-7756)U.S.Department of Energy(DE-FG02-05ER41374)。
文摘Using 20.3 fb^(-1)of e^(+)e^(-)annihilation data collected at a center-of-mass energy of 3.773 GeV with the BESⅢdetector,we report on an improved search for the radiative leptonic decay D^(+)→γe^(+)ve.An upper limit on its partial branching fraction for photon energies E_(γ)>10 MeV was determined to be 1.2×10^(-5)at a 90%confidence level;this excludes most current theoretical predictions.A sophisticated deep learning approach,which includes thorough validation and is based on the Transformer architecture,was implemented to efficiently distinguish the signal from massive backgrounds.
基金supported in part by the National Key R&D Program of China(2020YFA0406300,2020YFA0406400)National Natural Science Foundation of China(NSFC)(12035009,11635010,11735014,11835012,11935015,11935016,11935018,11961141012,12025502,12035013,12061131003,12192260,12192261,12192262,12192263,12192264,12192265,12221005,12225509,12235017)+17 种基金the Chinese Academy of Sciences(CAS)Large-Scale Scientific Facility Programthe CAS Center for Excellence in Particle Physics(CCEPP)Joint Large-Scale Scientific Facility Funds of the NSFC and CAS(U1832207)CAS Key Research Program of Frontier Sciences(QYZDJ-SSW-SLH003,QYZDJ-SSW-SLH040)100 Talents Program of CASthe Institute of Nuclear and Particle Physics(INPAC)and Shanghai Key Laboratory for Particle Physics and Cosmologythe European Union's Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant agreement(894790)the German Research Foundation DFG(455635585),the Collaborative Research Center CRC 1044,FOR5327,GRK 2149Istituto Nazionale di Fisica Nucleare,ItalyKnut and Alice Wallenberg Foundation(2021.0174,2021.0299)Ministry of Development of Turkey(DPT2006K-120470)National Research Foundation of Korea(NRF2022R1A2C1092335)National Science and Technology Fund of MongoliaNational Science Research and Innovation Fund(NSRF)via the Program Management Unit for Human Resources&Institutional Development,Research and Innovation of Thailand(B16F640076)Polish National Science Centre(2019/35/O/ST2/02907)Swedish Research Council(2019.04595)the Swedish Foundation for International Cooperation in Research and Higher Education(CH2018-7756)the U.S.Department of Energy(DE-FG02-05ER41374).
文摘Using an electron-positron collision data sample corresponding to(1.0087±0.0044)×10^(10)events collected using the BESIII detector at the BEPCII collider,we firstly search for the lepton number violation decayφ→π^(+)π^(+)e^(-)e^(-)via J/ψ→φη.No obviously signals are found.The upper limit on the branching fraction ofφ→π^(+)π^(+)e^(-)e^(-)is set to be 1.3×10^(-5)at the 90%confidence level.
基金National Key R&D Program of China(2023YFA1606000,2023YFA1606704)National Natural Science Foundation of China(NSFC)(11635010,11935015,11935016,11935018,12025502,12035009,12035013,12061131003,12192260,12192261,12192262,12192263,12192264,12192265,12221005,12225509,12235017,12361141819)+14 种基金the Chinese Academy of Sciences(CAS)Large-Scale Scientific Facility ProgramCAS(YSBR-101)100 Talents Program of CASThe Institute of Nuclear and Particle Physics(INPAC)and Shanghai Key Laboratory for Particle Physics and CosmologyAgencia Nacional de Investigación y Desarrollo de Chile(ANID),Chile(ANID PIA/APOYO AFB230003)German Research Foundation DFG(FOR5327)Istituto Nazionale di Fisica Nucleare,ItalyKnut and Alice Wallenberg Foundation(2021.0174,2021.0299)Ministry of Development of Turkey(DPT2006K-120470)National Research Foundation of Korea(NRF-2022R1A2C1092335)National Science and Technology fund of MongoliaNational Science Research and Innovation Fund(NSRF)via the Program Management Unit for Human Resources Institutional Development,Research and Innovation of Thailand(B50G670107)Polish National Science Centre(2024/53/B/ST2/00975)Swedish Research Council(2019.04595)U.S.Department of Energy(DE-FG02-05ER41374)。
文摘Based on a sample of 2.7x 10^(9)ψ(3686)events collected by the BESIII detector operating at the BEP-CII collider,the decay 4(3686)→YX_(cJ),X_(cJ)→ηηη’is analyzed.The decay modes X_(c1)and X_(c2)→ηηη’are observed for the first time,and their corresponding branching fractions are determined to be B(X_(c1)→ηηη’)=(1.40±0.13(stat.)±0.09(sys.))×10^(-4)and B(X_(c2)→ηηη’)=(4.18±0.84(stat.)±0.48(sys.))×10^(-5).An upper limit on the branching fraction of x_(co)→ηηη’is set as 2.59×10^(-5)at a 90%confidence level(CL).A partial wave analys-is(PWA)of the decay X_(c1)→ηηη’is performed to search for the 1^(-+)exotic stateη1(1855).The PWA result indic-ates that the structure in theηη’mass spectrum is attributed to f_(0)(1500),while in the m mass spectrum,it is attrib-uted to the 0^(++)phase space.The upper limit of B(x_(cl)→η1(1855)η)·B(η1(1855)→ηη')<9.79×10^(-5)is set based on the PWA at 90%CL.
基金Supported in part by National Key R&D Program of China(2023YFA1606000,2023YFA1606704)National Natural Science Foundation of China(NSFC)(12035009,11875170,11635010,11935015,11935016,11935018,12025502,12035013,12061131003,12192260,12192261,12192262,12192263,12192264,12192265,12221005,12225509,12235017,12361141819)+16 种基金the Chinese Academy of Sciences(CAS)Large-Scale Scientific Facility Program,CAS(YSBR-101)100 Talents Program of CASThe Institute of Nuclear and Particle Physics(INPAC)Shanghai Key Laboratory for Particle Physics and CosmologyAgencia Nacional de Investigación y Desarrollo de Chile(ANID)Chile(ANID PIA/APOYO AFB230003)ERC(758462)German Research Foundation DFG(FOR5327)Istituto Nazionale di Fisica Nucleare,ItalyKnut and Alice Wallenberg Foundation(2021.0174,2021.0299)Ministry of Development of Turkey(DPT2006K-120470)National Research Foundation of Korea(NRF-2022R1A2C1092335)National Science and Technology fund of MongoliaPolish National Science Centre(2024/53/B/ST2/00975)STFC(United Kingdom)Swedish Research Council(2019.04595)U.S.Department of Energy(DE-FG02-05ER41374)。
文摘Lepton number violation decayω→π^(+)π^(+)e^(-)e^(-)+c.c.is searched for via J/ψ→ωηusing a data sample of(1.0087±0.0044)×10^(10)J/ψevents collected via the BESIII detector at the BEPCII collider.No significant signal is observed,and the upper limit on the branching fraction ofω→π^(+)π^(+)e^(-)e^(-)+c.c.at the 90%confidence level is determined for the first time to be 2.8×10^(-6).
基金Supported in part by the National Key R&D Program of China(2023YFA1606000,2020YFA0406400,2020YFA0406300)the National Natural Science Foundation of China(NSFC)(11635010,11735014,11935015,11935016,11875054,11935018,12025502,12035009,12035013,12061131003,12192260,12192261,12192262,12192263,12192264,12192265,12221005,12225509,12235017,12361141819)+12 种基金the Chinese Academy of Sciences(CAS)Large-Scale Scientific Facility Programthe CAS Center for Excellence in Particle Physics(CCEPP)the Joint Large-Scale Scientific Facility Funds of the NSFC and CAS(U2032104,U1832207)the 100 Talents Program of CAS,the Excellent Youth Foundation of Henan Scientific Commitee(242300421044)the Institute of Nuclear and Particle Physics(INPAC)and Shanghai Key Laboratory for Particle Physics and Cosmology,the German Research Foundation DFG(FOR5327)the Istituto Nazionale di Fisica Nucleare,Italy,the Knut and Alice Wallenberg Foundation(2021.0174,2021.0299)the Ministry of Development of Turkey(DPT2006K-120470),the National Research Foundation of Korea(NRF-2022R1A2C1092335)the National Science and Technology Fund of Mongoliathe National Science Research and Innovation Fund(NSRF)via the Program Management Unit for Human Resources&Institutional Development,Research,and Innovation of Thailand(B16F640076,B50G670107)the Polish National Science Center(2019/35/O/ST2/02907)the Swedish Research Council(2019.04595)the Swedish Foundation for International Cooperation in Research and Higher Education(CH2018-7756)the US Department of Energy(DE-FG02-05ER41374)。
文摘We search for the leptonic decay D^(+)→e^(+)ν_(e)using an e+e-collision data sample with an integrated luminosity of 20.3 fb-1collected with the BESIII detector at a center-of-mass energy of 3.773 GeV.Significant signal is not observed,and an upper limit on the branching fraction of D^(+)→e^(+)ν_(e)is set as 9.7×10^(-7),at a confidence level of 90%.Our upper limit is an order of magnitude smaller than the previous limit for this decay mode.
基金supported in part by National Key R&D Program of China(2020YFA0406300,2020YFA0406400,2023YFA1606000)National Natural Science Foundation of China(NSFC)(12205141,11635010,11735014,11935015,11935016,11935018,12025502,12035009,12035013,12061131003,12192260,12192261,12192262,12192263,12192264,12192265,12221005,12225509,12235017,12361141819)+16 种基金Natural Science Foundation of Hunan Province(2024JJ2044)the Chinese Academy of Sciences(CAS)Large-Scale Scientific Facility Programthe CAS Center for Excellence in Particle Physics(CCEPP)Joint Large-Scale Scientific Facility Funds of the NSFC and CAS(U1832207)100 Talents Program of CASThe Institute of Nuclear and Particle Physics(INPAC)and Shanghai Key Laboratory for Particle Physics and CosmologyGerman Research Foundation DFG(FOR5327)Istituto Nazionale di Fisica Nucleare,ItalyKnut and Alice Wallenberg Foundation(2021.0174,2021.0299)Ministry of Development of Turkey(DPT2006K-120470)National Research Foundation of Korea(NRF2022R1A2C1092335)National Science and Technology fund of MongoliaNational Science Research and Innovation Fund(NSRF)via the Program Management Unit for Human Resources&Institutional Development,Research and Innovation of Thailand(B16F640076,B50G670107)Polish National Science Centre(2019/35/O/ST2/02907)Swedish Research Council(2019.04595)The Swedish Foundation for International Cooperation in Research and Higher Education(CH2018-7756)U.S.Department of Energy(DE-FG02-05ER41374)。
文摘Utilizing 4.5 fb^(-1)ofe^(+)e^(-)annihilation data collected at center-of-mass energies ranging from 4599.53 MeV to 4698.82 MeV by the BESIII detector at the BEPCII collider,we searched for singly Cabibbo-suppressed hadronic decaysΛ_(c)^(+)→Σ^(0)K^(+)π^(0)andΛ_(c)^(+)→Σ^(0)K^(+)π^(+)π^(−)and with a single-tag method.No significant signals were observed for both decays.The upper limits on the branching fractions at the 90%confidence level were determined to be 5.0×10^(-4)for and forΛ_(c)^(+)→Σ^(0)K^(+)π^(0)and 6.5×10^(-4)forΛ_(c)^(+)→Σ^(0)K^(+)π^(+)π^(−).
基金Supported in part by the National Key R&D Program of China(2020YFA0406300,2020YFA0406400)the National Natural Science Foundation of China(NSFC)(11625523,11635010,11735014,11835012,11935015,11935016,11935018,11961141012,12025502,12035009,12035013,12061131003,12105276,12122509,12192260,12192261,12192262,12192263,12192264,12192265,12221005,12225509,12235017)+15 种基金the Chinese Academy of Sciences(CAS)Large-Scale Scientific Facility Programthe CAS Center for Excellence in Particle Physics(CCEPP)Joint Large-Scale Scientific Facility Funds of the NSFC and CAS(U1732263,U1832103,U1832207,U2032111)CAS Key Research Program of Frontier Sciences(QYZDJ-SSW-SLH003,QYZDJ-SSW-SLH040)100 Talents Program of CASThe Institute of Nuclear and Particle Physics(INPAC)and Shanghai Key Laboratory for Particle Physics and CosmologyEuropean Union's Horizon 2020 research and innovation programme under Marie Sklodowska-Curie grant agreement(894790)German Research Foundation DFG(455635585),Collaborative Research Center CRC 1044,FOR5327,GRK 2149Istituto Nazionale di Fisica Nucleare,ItalyMinistry of Development of Turkey(DPT2006K-120470)National Research Foundation of Korea(NRF-2022R1A2C1092335)National Science and Technology fund of MongoliaNational Science Research and Innovation Fund(NSRF)via the Program Management Unit for Human Resources&Institutional Development,Research and Innovation of Thailand(B16F640076)Polish National Science Centre(2019/35/O/ST2/02907)The Swedish Research CouncilU.S.Department of Energy(DE-FG02-05ER41374)。
文摘Using e^(+)e^(−)annihilation data corresponding to an integrated luminosity of 2.93 fb^(−1)taken at the center-of-mass energy√s=3.773 GeV with the BESIII detector,a joint amplitude analysis is performed on the decays D^(0)→π^(+)π^(−)π^(+)π^(−)and D^(0)→π^(+)π^(−)π^(0)π^(0)(non-η).The fit fractions of individual components are obtained,and large interferences among the dominant components of the decays D^(0)→a_(1)(1260)π,D^(0)→π(1300)π,D^(0)→ρ(770)ρ(770),and D^(0)→2(ππ)_(S)are observed in both channels.With the obtained amplitude model,the CP-even fractions of D^(0)→π^(+)π^(−)π^(+)π^(−)and D^(0)→π^(+)π^(−)π^(0)π^(0)(non-η)are determined to be(75.2±1.1_(stat).±1.5_(syst.))%and(68.9±1.5_(stat).±2.4_(syst.))%,respectively.The branching fractions of D^(0)→π^(+)π^(−)π^(+)π^(−)and D^(0)→π^(+)π^(−)π^(0)π^(0)(non-η)are measured to be(0.688±0.010_(stat.)±0.010_(syst.))%and(0.951±0.025_(stat.)±0.021_(syst.))%,respectively.The amplitude analysis provides an important model for the binning strategy in measuring the strong phase parameters of D^(0)→4πwhen used to determine the CKM angleγ(ϕ_(3))via the B^(−)→DK^(−)decay.
基金Supported in part by the National Key R&D Program of China(2020YFA0406400,2020YFA0406300,2023YFA1606000)the National Natural Science Foundation of China(123B2077,12035009,11635010,11735014,11875054,11935015,11935016,11935018,11961141012,12025502,12035013,12061131003,12192260,12192261,12192262,12192263,12192264,12192265,12221005,12225509,12235017,12361141819)+8 种基金the Chinese Academy of Sciences(CAS)Large-Scale Scientific Facility Program,the CAS Center for Excellence in Particle Physics(CCEPP),the Joint Large-Scale Scientific Facility Funds of the NSFC and CAS(U2032104,U1832207)the Excellent Youth Foundation of Henan Scientific Commitee(242300421044)100 Talents Program of CASthe Institute of Nuclear and Particle Physics(INPAC)and Shanghai Key Laboratory for Particle Physics and Cosmology,German Research Foundation DFG(455635585,FOR5327,GRK 2149)Istituto Nazionale di Fisica Nucleare,Italy,Ministry of Development of Turkey(DPT2006K-120470)National Research Foundation of Korea(NRF-2022R1A2C1092335)National Science and Technology fund of Mongolia,National Science Research and Innovation Fund(NSRF)via the Program Management Unit for Human Resources&Institutional Development,Research and Innovation of Thailand(B16F640076)Polish National Science Centre(2019/35/O/ST2/02907),the Swedish Research CouncilU.S.Department of Energy(DE-FG02-05ER41374)。
文摘We present a measurement of the integrated luminosity of e^(+)e^(-)collision data collected by the BESIII detector at the BEPCII collider at a center-of-mass energy of Ecm=3.773 GeV.The integrated luminosities of the datasets taken from December 2021 to June 2022,from November 2022 to June 2023,and from October 2023 to February 2024 were determined to be 4.995±0.019 fb^(-1),8.157±0.031 fb^(-1),and 4.191±0.016 fb^(-1),respectively,by analyzing large angle Bhabha scattering events.The uncertainties are dominated by systematic effects,and the statistical uncertainties are negligible.Our results provide essential input for future analyses and precision measurements.