The physics of laser-plasma interaction is studied on the Shenguang III prototype laser facility under conditions relevant to inertial confinement fusion designs.A sub-millimeter-size underdense hot plasma is created ...The physics of laser-plasma interaction is studied on the Shenguang III prototype laser facility under conditions relevant to inertial confinement fusion designs.A sub-millimeter-size underdense hot plasma is created by ionization of a low-density plastic foam by four high-energy(3.2 kJ)laser beams.An interaction beam is fired with a delay permitting evaluation of the excitation of parametric instabilities at different stages of plasma evolution.Multiple diagnostics are used for plasma characterization,scattered radiation,and accelerated electrons.The experimental results are analyzed with radiation hydrodynamic simulations that take account of foam ionization and homogenization.The measured level of stimulated Raman scattering is almost one order of magnitude larger than that measured in experiments with gasbags and hohlraums on the same installation,possibly because of a greater plasma density.Notable amplification is achieved in high-intensity speckles,indicating the importance of implementing laser temporal smoothing techniques with a large bandwidth for controlling laser propagation and absorption.展开更多
In this study,a novel solid-state alloying approach was adopted to fabricate Al-Mg alloys with high Mg contents(C_(Mg)) by accumulative roll-bonding(ARB)of Al and Mg elemental materials to ultrahigh cycles.Experimenta...In this study,a novel solid-state alloying approach was adopted to fabricate Al-Mg alloys with high Mg contents(C_(Mg)) by accumulative roll-bonding(ARB)of Al and Mg elemental materials to ultrahigh cycles.Experimental results showed that the degree of alloying increased with the increase of ARB cycles and a supersaturatedα-Al solid solution accompanied with nanoprecipitates was formed in the Al-Mg alloys by ARB to 70 cycles.The as-prepared Al-Mg alloys exhibited enhanced mechanical properties,with a maximum tensile strength of∼615 MPa and a tensile elongation of∼10%at C_(Mg)=13 wt.%.The high strength can be attributed to different mechanisms,namely solid solution strengthening,grain boundary strengthening,dislocation strengthening,and precipitation strengthening.The Al-Mg alloys showed increased work hardening with increasing C_(Mg),due to the enhanced formation of nanoprecipitates.Meanwhile,no obvious drop in the intergranular corrosion(IGC)resistance was found in the Al-Mg alloys with C_(Mg) up to 13 wt.%.Moreover,sensitization treatment was found to induce little decrease in the IGC resistance of the Al-Mg alloys with C_(Mg)≤13 wt.%.We found that the excellent IGC resistance was due to the suppression of grain boundary precipitation by the preferred formation of precipitates within the grains that were induced by ARB.Our study indicated the novelty of the present solid-state alloying approach to achieving a superior combination of high mechanical properties and IGC resistance in Al-Mg alloys.展开更多
Vesicles can be of different sizes and shapes and can be randomly distributed within vesicular volcanic rocks. This study investigates the variation of engineering properties of vesicular rocks due to the changes in v...Vesicles can be of different sizes and shapes and can be randomly distributed within vesicular volcanic rocks. This study investigates the variation of engineering properties of vesicular rocks due to the changes in vesicle distribution characteristics for different cases of bulk porosity and vesicle diameter using a systematic numerical simulation program using the finite element method-based rock failure process analysis (RFPA) software. Models with uniform-size vesicles and combinations of different proportions of different-sized vesicles were considered to resemble natural vesicular rocks more closely, and ten different random vesicle distributions were tested for each case. Increasing bulk porosity decreased the uniaxial compressive strength (UCS) and elastic modulus of the specimens, and the specimens with the lowest bulk porosity showed the greatest range of UCS values in the case of uniform-size vesicles. The effect of vesicle diameter on UCS showed an unsystematic response which was understood to be a result of different vesicle distribution patterns, some of which facilitated a shear failure. Specimens with multiple-size vesicles in different proportions revealed that the variation of UCS due to vesicle distribution characteristics is minimum when the bulk porosity is equally shared by different size vesicles. In addition, when the proportion of smaller-sized vesicles is higher, UCS showed an increase compared to that of the equal proportion of different size vesicles case at low porosities, but a decrease at higher porosities. Variation of elastic modulus showed minor, unsystematic fluctuations as a function of vesicle diameter and different proportions of different-sized vesicles, and the range for different vesicle distribution patterns was narrow in general. Overall, the findings of this study recommend cautious use of the engineering properties determined through a limited number of laboratory tests on vesicular rocks.展开更多
The present paper reports the rapid surface alloying induced by the bombardment of high-current pulsed electron beam. Two kinds of substrate materials were examined to show this effect. The first sample was a pure Al ...The present paper reports the rapid surface alloying induced by the bombardment of high-current pulsed electron beam. Two kinds of substrate materials were examined to show this effect. The first sample was a pure Al metal pre-coated with fine carbon powders prior to the bombardment, and the second alloy is the D2-Crl2MolVl mould steel pre-coated with Cr, Ti, and TiN powders. The surface elements diffuse about several micrometers into the substrate materials only after several bombardments. Tribological behaviors of these samples were characterized and significant improvement in wear resistance was found. Finally, a TEM analysis reveals the presence of stress waves generated by coupled thermal and stress fields, which was considered as the main cause of the enhanced properties.展开更多
The establishment of a possible connection between neutrino emission and gravitational-wave(GW)bursts is important to our understanding of the physical processes that occur when black holes or neutron stars merge.In t...The establishment of a possible connection between neutrino emission and gravitational-wave(GW)bursts is important to our understanding of the physical processes that occur when black holes or neutron stars merge.In the Daya Bay experiment,using the data collected from December 2011 to August 2017,a search was per-formed for electron-antineutrino signals that coincided with detected GW events,including GW150914,GW151012,GW151226,GW170104,GW170608,GW 170814,and GW 170817.We used three time windows of±10,±500,and±1000 s relative to the occurrence of the GW events and a neutrino energy range of 1.8 to 100 MeV to search for correlated neutrino candidates.The detected electron-antineutrino candidates were consistent with the expected background rates for all the three time windows.Assuming monochromatic spectra,we found upper limits(90%confidence level)of the electron-antineutrino fluence of(1.13-2.44)×10^(11)cm^(-2)at 5 MeV to 8.0×10^(7)cm^(-2)at 100 MeV for the three time w indows.Under the assumption of a Fermi-Dirac spectrum,the upper limits were found to be(5.4-7.0)×10^(9)cm^(2)for the three time windows.展开更多
The prediction of reactor antineutrino spectra will play a crucial role as reactor experiments enter the precision era.The positron energy spectrum of 3.5 million antineutrino inverse beta decay reactions observed by ...The prediction of reactor antineutrino spectra will play a crucial role as reactor experiments enter the precision era.The positron energy spectrum of 3.5 million antineutrino inverse beta decay reactions observed by the Daya Bay experiment,in combination with the fission rates of fissile isotopes in the reactor,is used to extract the positron energy spectra resulting from the fission of specific isotopes.This information can be used to produce a precise,data-based prediction of the antineutrino energy spectrum in other reactor antineutrino experiments with different fission fractions than Daya Bay.The positron energy spectra are unfolded to obtain the antineutrino energy spectra by removing the contribution from detector response with the Wiener-SVD unfolding method.Consistent results are obtained with other unfolding methods.A technique to construct a data-based prediction of the reactor antineutrino energy spectrum is proposed and investigated.Given the reactor fission fractions,the technique can predict the energy spectrum to a 2%precision.In addition,we illustrate how to perform a rigorous comparison between the unfolded antineutrino spectrum and a theoretical model prediction that avoids the input model bias of the unfolding method.展开更多
基金This project was partially supported by the Advanced Research Using High Intensity Laser Produced Photons and Particles(ADONIS)project(Grant No.CZ.02.1.01/0.0/0.0/16_019/0000789)the CAAS project(Grant No.CZ.02.1.01/0.0/0.0/16_019/0000778)+3 种基金both from the European Regional Development FundThe results of the LQ1606 project were partially obtained with the financial support from the Ministry of Education,Youth and Sports as part of targeted support from the National Programme of Sustainability IIThe authors acknowledge support from the National Natural Science Foundation of China(Grant Nos.11775033,11875241,11975215,11905204,12035002)the Laser Fusion Research Center Funds for Young Talents(Grant No.RCFPD3-2019-6).
文摘The physics of laser-plasma interaction is studied on the Shenguang III prototype laser facility under conditions relevant to inertial confinement fusion designs.A sub-millimeter-size underdense hot plasma is created by ionization of a low-density plastic foam by four high-energy(3.2 kJ)laser beams.An interaction beam is fired with a delay permitting evaluation of the excitation of parametric instabilities at different stages of plasma evolution.Multiple diagnostics are used for plasma characterization,scattered radiation,and accelerated electrons.The experimental results are analyzed with radiation hydrodynamic simulations that take account of foam ionization and homogenization.The measured level of stimulated Raman scattering is almost one order of magnitude larger than that measured in experiments with gasbags and hohlraums on the same installation,possibly because of a greater plasma density.Notable amplification is achieved in high-intensity speckles,indicating the importance of implementing laser temporal smoothing techniques with a large bandwidth for controlling laser propagation and absorption.
基金supported by the National Natural Science Foundation of China(Nos.52175358 and 51371128)。
文摘In this study,a novel solid-state alloying approach was adopted to fabricate Al-Mg alloys with high Mg contents(C_(Mg)) by accumulative roll-bonding(ARB)of Al and Mg elemental materials to ultrahigh cycles.Experimental results showed that the degree of alloying increased with the increase of ARB cycles and a supersaturatedα-Al solid solution accompanied with nanoprecipitates was formed in the Al-Mg alloys by ARB to 70 cycles.The as-prepared Al-Mg alloys exhibited enhanced mechanical properties,with a maximum tensile strength of∼615 MPa and a tensile elongation of∼10%at C_(Mg)=13 wt.%.The high strength can be attributed to different mechanisms,namely solid solution strengthening,grain boundary strengthening,dislocation strengthening,and precipitation strengthening.The Al-Mg alloys showed increased work hardening with increasing C_(Mg),due to the enhanced formation of nanoprecipitates.Meanwhile,no obvious drop in the intergranular corrosion(IGC)resistance was found in the Al-Mg alloys with C_(Mg) up to 13 wt.%.Moreover,sensitization treatment was found to induce little decrease in the IGC resistance of the Al-Mg alloys with C_(Mg)≤13 wt.%.We found that the excellent IGC resistance was due to the suppression of grain boundary precipitation by the preferred formation of precipitates within the grains that were induced by ARB.Our study indicated the novelty of the present solid-state alloying approach to achieving a superior combination of high mechanical properties and IGC resistance in Al-Mg alloys.
文摘Vesicles can be of different sizes and shapes and can be randomly distributed within vesicular volcanic rocks. This study investigates the variation of engineering properties of vesicular rocks due to the changes in vesicle distribution characteristics for different cases of bulk porosity and vesicle diameter using a systematic numerical simulation program using the finite element method-based rock failure process analysis (RFPA) software. Models with uniform-size vesicles and combinations of different proportions of different-sized vesicles were considered to resemble natural vesicular rocks more closely, and ten different random vesicle distributions were tested for each case. Increasing bulk porosity decreased the uniaxial compressive strength (UCS) and elastic modulus of the specimens, and the specimens with the lowest bulk porosity showed the greatest range of UCS values in the case of uniform-size vesicles. The effect of vesicle diameter on UCS showed an unsystematic response which was understood to be a result of different vesicle distribution patterns, some of which facilitated a shear failure. Specimens with multiple-size vesicles in different proportions revealed that the variation of UCS due to vesicle distribution characteristics is minimum when the bulk porosity is equally shared by different size vesicles. In addition, when the proportion of smaller-sized vesicles is higher, UCS showed an increase compared to that of the equal proportion of different size vesicles case at low porosities, but a decrease at higher porosities. Variation of elastic modulus showed minor, unsystematic fluctuations as a function of vesicle diameter and different proportions of different-sized vesicles, and the range for different vesicle distribution patterns was narrow in general. Overall, the findings of this study recommend cautious use of the engineering properties determined through a limited number of laboratory tests on vesicular rocks.
文摘The present paper reports the rapid surface alloying induced by the bombardment of high-current pulsed electron beam. Two kinds of substrate materials were examined to show this effect. The first sample was a pure Al metal pre-coated with fine carbon powders prior to the bombardment, and the second alloy is the D2-Crl2MolVl mould steel pre-coated with Cr, Ti, and TiN powders. The surface elements diffuse about several micrometers into the substrate materials only after several bombardments. Tribological behaviors of these samples were characterized and significant improvement in wear resistance was found. Finally, a TEM analysis reveals the presence of stress waves generated by coupled thermal and stress fields, which was considered as the main cause of the enhanced properties.
基金This study was supported by the China Scholarship Council (GrantNo.160),National Nature Science Foundation of China (Grant No.400722006) and the Key Task Project of Science and Technology of Liaoning Province (Grant No.2001230001)
基金Daya Bay is supported in part by the Ministry of Science and Technology o f China, the U.S. Department o f Energy, the Chinese Academy of Sciences, the CASCenter for Excellence in Particle Physics, the National Natural Science Foundation of China, the Guangdong provincial government, the Shenzhen municipal government,the China General Nuclear Power Group, Key Laboratory of Particle and Radiation Imaging (Tsinghua University), the Ministry of Education, Key Laboratory ofParticle Physics and Particle Irradiation (Shandong University), the Ministry o f Education, Shanghai Laboratory for Particle Physics and Cosmology, the ResearchGrants Council o f the Hong Kong Special Administrative Region of China, the University Development Fund of the University of Hong Kong, the MOE program forResearch of Excellence at National Taiwan University, National Chiao-Tung University, NSC fund support from Taiwan, the U.S. National Science Foundation, the AlfredP. Sloan Foundation, the Ministry o f Education, Youth, and Sports of the Czech Republic, the Charles University GAUK (284317), the Joint Institute o f NuclearResearch in Dubna, Russia, the National Commission of Scientific and Technological Research of Chile, and the Tsinghua University Initiative Scientific Research Program.
文摘The establishment of a possible connection between neutrino emission and gravitational-wave(GW)bursts is important to our understanding of the physical processes that occur when black holes or neutron stars merge.In the Daya Bay experiment,using the data collected from December 2011 to August 2017,a search was per-formed for electron-antineutrino signals that coincided with detected GW events,including GW150914,GW151012,GW151226,GW170104,GW170608,GW 170814,and GW 170817.We used three time windows of±10,±500,and±1000 s relative to the occurrence of the GW events and a neutrino energy range of 1.8 to 100 MeV to search for correlated neutrino candidates.The detected electron-antineutrino candidates were consistent with the expected background rates for all the three time windows.Assuming monochromatic spectra,we found upper limits(90%confidence level)of the electron-antineutrino fluence of(1.13-2.44)×10^(11)cm^(-2)at 5 MeV to 8.0×10^(7)cm^(-2)at 100 MeV for the three time w indows.Under the assumption of a Fermi-Dirac spectrum,the upper limits were found to be(5.4-7.0)×10^(9)cm^(2)for the three time windows.
基金Supported in part by the Ministry of Science and Technology of Chinathe U.S.Department of Energy,the Chinese Academy of Sciences,the CAS Center for Excellence in Particle Physics,the National Natural Science Foundation of China+3 种基金the Guangdong provincial governmentthe Shenzhen municipal government,the China General Nuclear Power Group,the Research Grants Council of the Hong Kong Special Administrative Region of China,the Ministry of Education in TWthe U.S.National Science Foundation,the Ministry of Education,Youth,and Sports of the Czech Republic,the Charles University Research Centre UNCE,the Joint Institute of Nuclear Research in Dubna,Russiathe National Commission of Scientific and Technological Research of Chile。
文摘The prediction of reactor antineutrino spectra will play a crucial role as reactor experiments enter the precision era.The positron energy spectrum of 3.5 million antineutrino inverse beta decay reactions observed by the Daya Bay experiment,in combination with the fission rates of fissile isotopes in the reactor,is used to extract the positron energy spectra resulting from the fission of specific isotopes.This information can be used to produce a precise,data-based prediction of the antineutrino energy spectrum in other reactor antineutrino experiments with different fission fractions than Daya Bay.The positron energy spectra are unfolded to obtain the antineutrino energy spectra by removing the contribution from detector response with the Wiener-SVD unfolding method.Consistent results are obtained with other unfolding methods.A technique to construct a data-based prediction of the reactor antineutrino energy spectrum is proposed and investigated.Given the reactor fission fractions,the technique can predict the energy spectrum to a 2%precision.In addition,we illustrate how to perform a rigorous comparison between the unfolded antineutrino spectrum and a theoretical model prediction that avoids the input model bias of the unfolding method.