A new direction toward the future of orthopedic implants is to combine biodegradable Mg alloys with permanent Ti to produce selectively biodegradable hybrid joints for advanced tissue engineering.However,the strong ga...A new direction toward the future of orthopedic implants is to combine biodegradable Mg alloys with permanent Ti to produce selectively biodegradable hybrid joints for advanced tissue engineering.However,the strong galvanic corrosion between Mg and Ti is a major issue to be considered.This work aims to explore plasma electrolytic oxidation(PEO)as a single-step coating treatment to allow for an acceptable degradation behavior of MgTi hybrid systems.To this end,MgTi hybrid joints were produced through the heat treatment of Mg-0.6Ca and commercially pure Ti specimens at 640°C for 8 h.A single-step PEO treatment was then employed to create a protective layer on the surface of hybrid couples.Even though the scanning electron microscopy(SEM)images showed only a porosity of 6%and 12%within the PEO layers on single Mg and MgTi couples,3D investigation of the synchrotron-based microtomography data demonstrated a porosity of 18%and 30%with a considerable number of interconnected pores.According to the electrochemical impedance spectroscopy measurements,the impedance modulus at all frequencies on coated MgTi coupled specimens was lower than that on the coated single Mg-0.6Ca and pure Ti.However,the application of PEO treatment significantly decreased the strong galvanic degradation of Mg-0.6Ca in contact with Ti.The results of hydrogen evolution tests revealed that PEO-treated MgTi couples showed a similar degradation behavior as the single alloy during the first day of immersion.展开更多
Recently,by intercalating organic ions into bulk FeSe superconductors,two kinds of layered FeSe-based superconductors[(TBA)xFeSe and(CTA)xFeSe]with superconducting transition temperatures(Tc)above 40 K have been disco...Recently,by intercalating organic ions into bulk FeSe superconductors,two kinds of layered FeSe-based superconductors[(TBA)xFeSe and(CTA)xFeSe]with superconducting transition temperatures(Tc)above 40 K have been discovered.Due to the large interlayer distance(~15A),these new layered superconductors have a large resistivity anisotropy analogous to bismuth-based cuprate superconductors.Moreover,remarkable pseudogap behavior well above Tcis revealed by nuclear magnetic resonance(NMR)measurements on77Se nuclei,suggesting a preformed pairing scenario similar to that of cuprates.Here,we report another new kind of organic-ion-intercalated FeSe superconductor,(PY)xFeSe,with a reduced interlayer distance(~10A)compared to(TBA)xFeSe and(CTA)xFeSe.By performing77Se NMR and transport measurements,we observe a similar pseudogap behavior well above Tcof~40 K and a large resistivity anisotropy of~10~4 in(PY)xFeSe.All these facts strongly support a universal pseudogap behavior in these layered FeSe-based superconductors with quasi-two-dimensional electronic structures.展开更多
基金support from the Alexander von Humboldt Foundation.We thank DESY(Hamburg,Germany)for granting the proposal I20221296support at the PETRA III P05 end-station.
文摘A new direction toward the future of orthopedic implants is to combine biodegradable Mg alloys with permanent Ti to produce selectively biodegradable hybrid joints for advanced tissue engineering.However,the strong galvanic corrosion between Mg and Ti is a major issue to be considered.This work aims to explore plasma electrolytic oxidation(PEO)as a single-step coating treatment to allow for an acceptable degradation behavior of MgTi hybrid systems.To this end,MgTi hybrid joints were produced through the heat treatment of Mg-0.6Ca and commercially pure Ti specimens at 640°C for 8 h.A single-step PEO treatment was then employed to create a protective layer on the surface of hybrid couples.Even though the scanning electron microscopy(SEM)images showed only a porosity of 6%and 12%within the PEO layers on single Mg and MgTi couples,3D investigation of the synchrotron-based microtomography data demonstrated a porosity of 18%and 30%with a considerable number of interconnected pores.According to the electrochemical impedance spectroscopy measurements,the impedance modulus at all frequencies on coated MgTi coupled specimens was lower than that on the coated single Mg-0.6Ca and pure Ti.However,the application of PEO treatment significantly decreased the strong galvanic degradation of Mg-0.6Ca in contact with Ti.The results of hydrogen evolution tests revealed that PEO-treated MgTi couples showed a similar degradation behavior as the single alloy during the first day of immersion.
基金supported by the National Natural Science Foundation of China(Grant Nos.11888101 and 12034004)the National Key R&D Program of China(Grant No.2017YFA0303000)+2 种基金the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDB25000000)the Anhui Initiative in Quantum Information Technologies(Grant No.AHY160000)the Innovation Program for Quantum Science and Technology(Grant No.2021ZD0302800)。
文摘Recently,by intercalating organic ions into bulk FeSe superconductors,two kinds of layered FeSe-based superconductors[(TBA)xFeSe and(CTA)xFeSe]with superconducting transition temperatures(Tc)above 40 K have been discovered.Due to the large interlayer distance(~15A),these new layered superconductors have a large resistivity anisotropy analogous to bismuth-based cuprate superconductors.Moreover,remarkable pseudogap behavior well above Tcis revealed by nuclear magnetic resonance(NMR)measurements on77Se nuclei,suggesting a preformed pairing scenario similar to that of cuprates.Here,we report another new kind of organic-ion-intercalated FeSe superconductor,(PY)xFeSe,with a reduced interlayer distance(~10A)compared to(TBA)xFeSe and(CTA)xFeSe.By performing77Se NMR and transport measurements,we observe a similar pseudogap behavior well above Tcof~40 K and a large resistivity anisotropy of~10~4 in(PY)xFeSe.All these facts strongly support a universal pseudogap behavior in these layered FeSe-based superconductors with quasi-two-dimensional electronic structures.