This study focuses on the vaneless diffuser of a centrifugal compressor. The examined stage consists of an unshrouded impeller, a parallel wall vaneless diffuser and a volute. The walls of the diffuser were movable al...This study focuses on the vaneless diffuser of a centrifugal compressor. The examined stage consists of an unshrouded impeller, a parallel wall vaneless diffuser and a volute. The walls of the diffuser were movable allowing different pinch configurations to be investigated. The baseline geometry had no pinch i.e. the height of the diffuser was equal to the height of the impeller flow channel plus the axial running clearance. The work consists of both numerical and experimental parts. Quasi-steady, turbulent, fully 3D numerical simulations were conducted. The inlet cone, rotor and diffuser were modelled. Six different configurations were studied. The height of the pinch was altered and the pinch made to different walls was tested. Two of the numerically studied cases were also experimentally investigated. The overall performance of the compressor, the circumferential static and total pressure and the spanwise total pressure distribution before and after the diffuser were measured. The numerical and experimental studies showed that the pinch improved the efficiency of the compressor.展开更多
文摘This study focuses on the vaneless diffuser of a centrifugal compressor. The examined stage consists of an unshrouded impeller, a parallel wall vaneless diffuser and a volute. The walls of the diffuser were movable allowing different pinch configurations to be investigated. The baseline geometry had no pinch i.e. the height of the diffuser was equal to the height of the impeller flow channel plus the axial running clearance. The work consists of both numerical and experimental parts. Quasi-steady, turbulent, fully 3D numerical simulations were conducted. The inlet cone, rotor and diffuser were modelled. Six different configurations were studied. The height of the pinch was altered and the pinch made to different walls was tested. Two of the numerically studied cases were also experimentally investigated. The overall performance of the compressor, the circumferential static and total pressure and the spanwise total pressure distribution before and after the diffuser were measured. The numerical and experimental studies showed that the pinch improved the efficiency of the compressor.