In this article, the generalized model for thermoelastic waves with two relaxation times is utilized to compute the increment of temperature, the displacement components, the stress components, and the changes in the ...In this article, the generalized model for thermoelastic waves with two relaxation times is utilized to compute the increment of temperature, the displacement components, the stress components, and the changes in the volume fraction field in a two-dimensional porous medium. By using the Fourier-Laplace transform and the eigenvalue method, the considered variables are obtained analytically. The derived approach is estimated with numerical outcomes which are applied to the porous media with a geometrical simplification. The numerical results for the considered variables are performed and presented graphically. Finally, the outcomes are represented graphically to display the difference among the classical dynamical(CD) coupled, the Lord-Shulman(LS), and the Green-Lindsay(GL) models.展开更多
基金Project supported by the Deanship of Scientific Research (DSR),King Abdulaziz University,Jeddah(No.DF-782-130-1441)。
文摘In this article, the generalized model for thermoelastic waves with two relaxation times is utilized to compute the increment of temperature, the displacement components, the stress components, and the changes in the volume fraction field in a two-dimensional porous medium. By using the Fourier-Laplace transform and the eigenvalue method, the considered variables are obtained analytically. The derived approach is estimated with numerical outcomes which are applied to the porous media with a geometrical simplification. The numerical results for the considered variables are performed and presented graphically. Finally, the outcomes are represented graphically to display the difference among the classical dynamical(CD) coupled, the Lord-Shulman(LS), and the Green-Lindsay(GL) models.