One of the most important of these emissions is fine particulate matter,which is a harmful emission of diesel engines,leading to the imposition of strict regulations.Biodiesel,with its high oxygen content,is an effect...One of the most important of these emissions is fine particulate matter,which is a harmful emission of diesel engines,leading to the imposition of strict regulations.Biodiesel,with its high oxygen content,is an effective alternative to significantly reduce these emissions.In this study,rapeseed methyl ester(RME)was used as a diesel engine fuel and the emitted particulate matter was comparedwith ultra-lowsulfur diesel(ULSD).Inmost experimental studies,the emission of soot wasmeasured.In this work,the effects of injection timing,injection pressure(IP),and engine load on fine particulate matter in both nucleation and accumulation modes were studied.The results show that IP increases the number of particles in the accumulation mode while the number of particles in the crystallization mode is higher for rapeseed methyl ester(RME)than for ultra-low sulfur diesel(ULSD).Conversely,the formation rates of particles in the accumulationmode are higher for ULSD.Cumulative concentration numbers(CCN)are generally higher for RME in crystallization mode but higher for ULSD in accumulation mode.Increasing the IP reduces the CCN values.The particle size in crystallizationmode reaches a maximum of 22 nm at IPs of 800 and 1000 bar but decreases to 15 nm at 1200 bar.Most fine particles fall in the 5–100 nm diameter range.High engine loads reduce the particle size distribution in nucleationmode for both fuels,with a slight increase in particle size in nucleationmode.Thestudy concluded that the use of rapeseed methyl ester as an engine fuel benefits the environment and improves air quality due to the significant reduction in the size,number,and concentration of nano-soot particles and total particles emitted from the engine.展开更多
文摘One of the most important of these emissions is fine particulate matter,which is a harmful emission of diesel engines,leading to the imposition of strict regulations.Biodiesel,with its high oxygen content,is an effective alternative to significantly reduce these emissions.In this study,rapeseed methyl ester(RME)was used as a diesel engine fuel and the emitted particulate matter was comparedwith ultra-lowsulfur diesel(ULSD).Inmost experimental studies,the emission of soot wasmeasured.In this work,the effects of injection timing,injection pressure(IP),and engine load on fine particulate matter in both nucleation and accumulation modes were studied.The results show that IP increases the number of particles in the accumulation mode while the number of particles in the crystallization mode is higher for rapeseed methyl ester(RME)than for ultra-low sulfur diesel(ULSD).Conversely,the formation rates of particles in the accumulationmode are higher for ULSD.Cumulative concentration numbers(CCN)are generally higher for RME in crystallization mode but higher for ULSD in accumulation mode.Increasing the IP reduces the CCN values.The particle size in crystallizationmode reaches a maximum of 22 nm at IPs of 800 and 1000 bar but decreases to 15 nm at 1200 bar.Most fine particles fall in the 5–100 nm diameter range.High engine loads reduce the particle size distribution in nucleationmode for both fuels,with a slight increase in particle size in nucleationmode.Thestudy concluded that the use of rapeseed methyl ester as an engine fuel benefits the environment and improves air quality due to the significant reduction in the size,number,and concentration of nano-soot particles and total particles emitted from the engine.