期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Phase-change heterostructure with HfTe_(2)confinement sublayers for enhanced thermal efficiency and low-power operation through Joule heating localization 被引量:1
1
作者 S.W.Park H.J.Lee +6 位作者 K.A.Nirmal T.H.Kim D.H.Kim J.Y.Choi J.S.Oh J.M.Joo t.g.kim 《Journal of Materials Science & Technology》 2025年第1期104-114,共11页
Although phase-change random-access memory(PCRAM)is a promising next-generation nonvolatile memory technology,challenges remain in terms of reducing energy consumption.This is primarily be-cause the high thermal condu... Although phase-change random-access memory(PCRAM)is a promising next-generation nonvolatile memory technology,challenges remain in terms of reducing energy consumption.This is primarily be-cause the high thermal conductivities of phase-change materials(PCMs)promote Joule heating dissi-pation.Repeated phase transitions also induce long-range atomic diffusion,limiting the durability.To address these challenges,phase-change heterostructure(PCH)devices that incorporate confinement sub-layers based on transition-metal dichalcogenide materials have been developed.In this study,we engi-neered a PCH device by integrating HfTe_(2),which has low thermal conductivity and excellent stability,into the PCM to realize PCRAM with enhanced thermal efficiency and structural stability.HEAT sim-ulations were conducted to validate the superior heat confinement in the programming region of the HfTe_(2)-based PCH device.Moreover,electrical measurements of the device demonstrated its outstanding performance,which was characterized by a low RESET current(∼1.6 mA),stable two-order ON/OFF ratio,and exceptional cycling endurance(∼2×10^(7)).The structural integrity of the HfTe_(2)confinement sub-layer was confirmed using X-ray photoelectron spectroscopy and transmission electron microscopy.The material properties,including electrical conductivity,cohesive energy,and electronegativity,substantiated these findings.Collectively,these results revealed that the HfTe_(2)-based PCH device can achieve significant improvements in performance and reliability compared with conventional PCRAM devices. 展开更多
关键词 Phase-change random-access memory Phase-change heterostructure Thermal efficiency Thermal stability Low-power operation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部