Structural integrity procedures were used to demonstrate the fitness for the purpose of engineering components transmitting loads. The prediction of the fracture strength of titanium alloys containing sharp notches th...Structural integrity procedures were used to demonstrate the fitness for the purpose of engineering components transmitting loads. The prediction of the fracture strength of titanium alloys containing sharp notches through the damage model depends on the un-notched strength and the critical length of the damage zone ahead of the notch. In general, the critical length of the damage zone depends on the material, specimen, and size of the sharp notch. Modifications were made in one of the stress fracture criteria known as the average stress criterion for accurate prediction of notched tensile strength of titanium alloy specimen containing sharp notches. To examine the adequacy of these modifications, fracture data of center-cracked titanium alloys with various thicknesses are considered. The notched (fracture) strength estimates are found to be close to the test results. The modified average stress criterion is very simple to predict the notched tensile strength.展开更多
The defect assessment in butt-welded joint of ASTM A36 steel plates and 7075-T7351 aluminum alloy plates containing transverse through thickness crack was analyzed using SINTAP procedure and FEA incorporating weld ind...The defect assessment in butt-welded joint of ASTM A36 steel plates and 7075-T7351 aluminum alloy plates containing transverse through thickness crack was analyzed using SINTAP procedure and FEA incorporating weld induced residual stresses. Weld induced longitudinal residual stress profile can be obtained through SINTAP procedure, FEA or experimental analysis. This residual stress profile can be fitted with the trapezoidal residual stress profile available in SINTAP. For three different cases, crack length and residual stress intensity factor (SIF) are calculated and its comparison with the results obtained through FEA is plotted with respect to crack length. The stress intensity factor for mechanical loading is also plotted in the same graph. Using this graphical plot, the total SIF, including residual stress and mechanical loading, can be calculated for any particular crack size. The total SIF can be compared with the fracture toughness of the material for damage tolerance analysis. Also a failure assessment diagram is drawn for welded 7075-T7351 aluminum alloy plates with different crack sizes for as-welded (only residual stress) and mechanical loading along with the existing weld induced residual stresses to show the safety level for a particular crack size and mechanical loading.展开更多
The utilization of pressure vessels in aerospace applications is manifold.In this work,fnite element analysis(FEA)has been carried out using ANSYS software package with 2D axisymmetric model to access the failure pr...The utilization of pressure vessels in aerospace applications is manifold.In this work,fnite element analysis(FEA)has been carried out using ANSYS software package with 2D axisymmetric model to access the failure pressure of cylindrical pressure vessel made of ASTM A36 carbon steel having weld-induced residual stresses.To fnd out the effect of residual stresses on failure pressure,frst an elasto-plastic analysis is performed to fnd out the failure pressure of pressure vessel not having residual stresses.Then a thermo-mechanical fnite element analysis is performed to assess the residual stresses developed in the pressure vessel during welding.Finally one more elasto-plastic analysis is performed to assess the effect of residual stresses on failure pressure of the pressure vessel having residual stresses.This analysis indicates reduction in the failure pressure due to unfavorable residual stresses.展开更多
文摘Structural integrity procedures were used to demonstrate the fitness for the purpose of engineering components transmitting loads. The prediction of the fracture strength of titanium alloys containing sharp notches through the damage model depends on the un-notched strength and the critical length of the damage zone ahead of the notch. In general, the critical length of the damage zone depends on the material, specimen, and size of the sharp notch. Modifications were made in one of the stress fracture criteria known as the average stress criterion for accurate prediction of notched tensile strength of titanium alloy specimen containing sharp notches. To examine the adequacy of these modifications, fracture data of center-cracked titanium alloys with various thicknesses are considered. The notched (fracture) strength estimates are found to be close to the test results. The modified average stress criterion is very simple to predict the notched tensile strength.
文摘The defect assessment in butt-welded joint of ASTM A36 steel plates and 7075-T7351 aluminum alloy plates containing transverse through thickness crack was analyzed using SINTAP procedure and FEA incorporating weld induced residual stresses. Weld induced longitudinal residual stress profile can be obtained through SINTAP procedure, FEA or experimental analysis. This residual stress profile can be fitted with the trapezoidal residual stress profile available in SINTAP. For three different cases, crack length and residual stress intensity factor (SIF) are calculated and its comparison with the results obtained through FEA is plotted with respect to crack length. The stress intensity factor for mechanical loading is also plotted in the same graph. Using this graphical plot, the total SIF, including residual stress and mechanical loading, can be calculated for any particular crack size. The total SIF can be compared with the fracture toughness of the material for damage tolerance analysis. Also a failure assessment diagram is drawn for welded 7075-T7351 aluminum alloy plates with different crack sizes for as-welded (only residual stress) and mechanical loading along with the existing weld induced residual stresses to show the safety level for a particular crack size and mechanical loading.
文摘The utilization of pressure vessels in aerospace applications is manifold.In this work,fnite element analysis(FEA)has been carried out using ANSYS software package with 2D axisymmetric model to access the failure pressure of cylindrical pressure vessel made of ASTM A36 carbon steel having weld-induced residual stresses.To fnd out the effect of residual stresses on failure pressure,frst an elasto-plastic analysis is performed to fnd out the failure pressure of pressure vessel not having residual stresses.Then a thermo-mechanical fnite element analysis is performed to assess the residual stresses developed in the pressure vessel during welding.Finally one more elasto-plastic analysis is performed to assess the effect of residual stresses on failure pressure of the pressure vessel having residual stresses.This analysis indicates reduction in the failure pressure due to unfavorable residual stresses.