AIM:To determine the effects of safranal on choroidal neovascularization(CNV)and oxidative stress damage of human choroidal microvascular endothelial cells(HCVECs)and its possible mechanisms.METHODS:Forty-five rats we...AIM:To determine the effects of safranal on choroidal neovascularization(CNV)and oxidative stress damage of human choroidal microvascular endothelial cells(HCVECs)and its possible mechanisms.METHODS:Forty-five rats were used as a laser-induced CNV model for testing the efficacy and safety of safranal(0.5 mg/kg·d,intraperitoneally)on CNV.CNV leakage on fluorescein angiography(FA)and CNV thickness on histology was compared.HCVECs were used for a H_(2)O_(2)-induced oxidative stress model to test the effect of safranal in vitro.MTT essay was carried to test the inhibition rate of safranal on cell viability at different concentrations.Tube formation was used to test protective effect of safranal on angiogenesis at different concentrations.mRNA transcriptome sequencing was performed to find the possible signal pathway.The expressions of different molecules and their phosphorylation level were validated by Western blotting.RESULTS:On FA,the average CNV leakage area was 0.73±0.49 and 0.31±0.11 mm^(2)(P=0.012)in the control and safranal-treated group respectively.The average CNV thickness was 127.4±18.75 and 100.6±17.34μm(P=0.001)in control and safranal-treated group.Under the condition of oxidative stress,cell proliferation was inhibited by safranal and inhibition rates were 7.4%-35.4%at the different concentrations.For tube formation study,the number of new branches was 364 in control group and 35,42,and 17 in 20,40,and 80μg/mL safranal groups respectively(P<0.01).From the KEGG pathway bubble graph,the PI3K-AKT signaling pathway showed a high gene ratio.The protein expression was elevated of insulin receptor substrate(IRS)and the phosphorylation level of PI3K,phosphoinositide-dependent protein kinase 1/2(PDK1/2),AKT and Bcl-2 associated death promoter(BAD)was also elevated under oxidative stress condition but inhibited by safranal.CONCLUSION:Safranal can inhibit CNV both in vivo and in vitro,and the IRS-PI3K-PDK1/2-AKT-BAD signaling pathway is involved in the pathogenesis of CNV.展开更多
The role of ROS in hydroquinone-induced inhibition of K562 cell erythroid differentiation was investigated. After K562 cells were treated with hydroquinone for 24 h, and hemin was later added to induce erythroid diffe...The role of ROS in hydroquinone-induced inhibition of K562 cell erythroid differentiation was investigated. After K562 cells were treated with hydroquinone for 24 h, and hemin was later added to induce erythroid differentiation for 48 h, hydroquinone inhibited hemin-induced hemoglobin synthesis and mRNA expression of y-globin in K562 cells in a concentration-dependent manner. The 24-h exposure to hydroquinone also caused a concentration-dependent increase at an intracellular ROS level, while the presence of N- acetyI-L-cysteine prevented hydroquinone- induced ROS production in K562 cells. The presence of N-acetyI-L-cysteine also prevented hydroquinone inhibiting hemin-induced hemoglobin synthesis and mRNA expression of y-globin in K562 cells. These evidences indicated that ROS production played a role in hydroquinone-induced inhibition of erythroid differentiation.展开更多
基金Supported by the National Natural Science Foundation of China(No.81760027,No.81860763)Youth Innovation Project of Affiliated Hospital of Inner Mongolia University for Nationalities(No.2018QNJJ01)Young and Middle-aged Ophthalmic Research Fund of Bethune-Lumitin(No.BJ-LM202005)。
文摘AIM:To determine the effects of safranal on choroidal neovascularization(CNV)and oxidative stress damage of human choroidal microvascular endothelial cells(HCVECs)and its possible mechanisms.METHODS:Forty-five rats were used as a laser-induced CNV model for testing the efficacy and safety of safranal(0.5 mg/kg·d,intraperitoneally)on CNV.CNV leakage on fluorescein angiography(FA)and CNV thickness on histology was compared.HCVECs were used for a H_(2)O_(2)-induced oxidative stress model to test the effect of safranal in vitro.MTT essay was carried to test the inhibition rate of safranal on cell viability at different concentrations.Tube formation was used to test protective effect of safranal on angiogenesis at different concentrations.mRNA transcriptome sequencing was performed to find the possible signal pathway.The expressions of different molecules and their phosphorylation level were validated by Western blotting.RESULTS:On FA,the average CNV leakage area was 0.73±0.49 and 0.31±0.11 mm^(2)(P=0.012)in the control and safranal-treated group respectively.The average CNV thickness was 127.4±18.75 and 100.6±17.34μm(P=0.001)in control and safranal-treated group.Under the condition of oxidative stress,cell proliferation was inhibited by safranal and inhibition rates were 7.4%-35.4%at the different concentrations.For tube formation study,the number of new branches was 364 in control group and 35,42,and 17 in 20,40,and 80μg/mL safranal groups respectively(P<0.01).From the KEGG pathway bubble graph,the PI3K-AKT signaling pathway showed a high gene ratio.The protein expression was elevated of insulin receptor substrate(IRS)and the phosphorylation level of PI3K,phosphoinositide-dependent protein kinase 1/2(PDK1/2),AKT and Bcl-2 associated death promoter(BAD)was also elevated under oxidative stress condition but inhibited by safranal.CONCLUSION:Safranal can inhibit CNV both in vivo and in vitro,and the IRS-PI3K-PDK1/2-AKT-BAD signaling pathway is involved in the pathogenesis of CNV.
基金supported by the National Natural Science Foundation of China(Project No.81072325)
文摘The role of ROS in hydroquinone-induced inhibition of K562 cell erythroid differentiation was investigated. After K562 cells were treated with hydroquinone for 24 h, and hemin was later added to induce erythroid differentiation for 48 h, hydroquinone inhibited hemin-induced hemoglobin synthesis and mRNA expression of y-globin in K562 cells in a concentration-dependent manner. The 24-h exposure to hydroquinone also caused a concentration-dependent increase at an intracellular ROS level, while the presence of N- acetyI-L-cysteine prevented hydroquinone- induced ROS production in K562 cells. The presence of N-acetyI-L-cysteine also prevented hydroquinone inhibiting hemin-induced hemoglobin synthesis and mRNA expression of y-globin in K562 cells. These evidences indicated that ROS production played a role in hydroquinone-induced inhibition of erythroid differentiation.