期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Tailoring microstructure and strength-ductility synergy in AZ91D/ZrO2 magnesium matrix composite by dual eccentric-pin tool friction stir processing
1
作者 Ashish kumar Long Li +5 位作者 Lei Shi Lu Liu Xiang Zhang Virendra Pratap Singh surendra kumar patel Chuansong Wu 《Journal of Magnesium and Alloys》 2025年第11期5669-5687,共19页
The inherent trade-off between ductility and strength in Mg alloys remains a significant challenge,primarily governed by microstructural distribution and texture characteristics.Friction stir processing(FSP),a severe ... The inherent trade-off between ductility and strength in Mg alloys remains a significant challenge,primarily governed by microstructural distribution and texture characteristics.Friction stir processing(FSP),a severe plastic deformation(SPD)technique,refines microstructures by generating fine grains,uniformly dispersed fragmented particles,and a high fraction of high-angle grain boundaries(HAGBs),thereby facilitating superplastic forming at high strain rates and low temperatures.In the present work,a dual eccentric-pin tool(DEPT)FSP was employed to incorporate ZrO_(2) particles into a 6 mm thick AZ91D Mg alloy,leading to the formation of high volume{10-12}twins,dislocations,and β-Mg_(17)Al_(12) precipitates within the stirred zone.The microstructural evolution and mechanical behaviour of the stir zone under various process parameters were analysed using scanning electron microscopy(SEM),X-ray diffraction(XRD),electron backscatter diffraction(EBSD),and transmission electron microscopy(TEM).The DEPT enhanced plastic shearing and dynamic recrystallization,significantly reducing the grain size from 15.6μm to 2.35μm while promoting uniform dislocation distribution within the stir zone(SZ).Grain orientation analysis revealed a transition from basal to prismatic texture dominance(29.3% volume fraction)due to intensified radial-tangential coupling shear deformation,facilitating the activation of non-basal slip systems.The DEPT evidently improved the hardness of the SZ from 58 to 92 HV and increased tensile strength from 234 MPa to 325 MPa while maintaining an elongation of 23.8%,achieving an optimal strengthductility balance.This work presents a one-step approach for tailoring microstructural heterogeneity and enhancing mechanical properties in AZ91D/ZrO_(2) composites using the DEPT FSP technique.The method provides an effective strategy for mitigating the strength-ductility trade-off commonly observed in Mg alloys. 展开更多
关键词 Friction stir processing(FSP) Magnesium alloys Strength-ductility synergy Tailoring microstructure Non-basal texture Dual Eccentric-Pin Tool(DEPT)
在线阅读 下载PDF
Microstructure,Corrosion and Mechanical Properties of Medium-Thick 6061-T6 Alloy/T2 Pure Cu Dissimilar Joints Produced by Double Side Friction Stir Z Shape Lap-Butt Welding
2
作者 Jiuxing Tang Guoxin Dai +5 位作者 Lei Shi Chuansong Wu Sergey Mironov surendra kumar patel Song Gao Mingxiao Wu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第2期385-400,共16页
A novel double side friction stir Z shape lap-butt welding(DS-FSZW)process was proposed to achieve excellent mechanical properties of Al/Cu medium-thick dissimilar joints.The influence of welding parameters on weld mi... A novel double side friction stir Z shape lap-butt welding(DS-FSZW)process was proposed to achieve excellent mechanical properties of Al/Cu medium-thick dissimilar joints.The influence of welding parameters on weld microstructure and properties of DS-FSZW joint were systematically investigated.It indicated that defect-free medium-thick Al/Cu DS-FSZW joint could be achieved under an optimal welding parameter.DS-FSZW joint was prone to form void defects in the bottom of the second-pass weld.The recrystallization mechanisms at the top and middle of the weld nugget zone(WNZ)were continuous dynamic recrystallization(CDRX)and geometric dynamic recrystallization(GDRX).While the major recrystallization mechanism at the bottom of the WNZ was GDRX.DS-FSZW joint of the optimal welding condition with 850 r/min-400 mm/min was produced with a continuous thin and crack-free IMCs layer at the Al/Cu interface,and the maximum tensile strength of this joint is 160.57 MPa,which is equivalent to 65.54%of pure Cu base material.Moreover,the corrosion resistance of Al/Cu DS-FSZW joints also achieved its maximum value at the optimal welding parameter of 850 r/min-400 mm/min.It demonstrates that the DS-FSZW process can simultaneously produce medium-thick Al/Cu joints with excellent mechanical performance and corrosion resistance. 展开更多
关键词 DS-FSZW Al/Cu dissimilar joint Corrosion behaviour Intermetallic compounds MICROSTRUCTURE Mechanical properties
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部