The inherent trade-off between ductility and strength in Mg alloys remains a significant challenge,primarily governed by microstructural distribution and texture characteristics.Friction stir processing(FSP),a severe ...The inherent trade-off between ductility and strength in Mg alloys remains a significant challenge,primarily governed by microstructural distribution and texture characteristics.Friction stir processing(FSP),a severe plastic deformation(SPD)technique,refines microstructures by generating fine grains,uniformly dispersed fragmented particles,and a high fraction of high-angle grain boundaries(HAGBs),thereby facilitating superplastic forming at high strain rates and low temperatures.In the present work,a dual eccentric-pin tool(DEPT)FSP was employed to incorporate ZrO_(2) particles into a 6 mm thick AZ91D Mg alloy,leading to the formation of high volume{10-12}twins,dislocations,and β-Mg_(17)Al_(12) precipitates within the stirred zone.The microstructural evolution and mechanical behaviour of the stir zone under various process parameters were analysed using scanning electron microscopy(SEM),X-ray diffraction(XRD),electron backscatter diffraction(EBSD),and transmission electron microscopy(TEM).The DEPT enhanced plastic shearing and dynamic recrystallization,significantly reducing the grain size from 15.6μm to 2.35μm while promoting uniform dislocation distribution within the stir zone(SZ).Grain orientation analysis revealed a transition from basal to prismatic texture dominance(29.3% volume fraction)due to intensified radial-tangential coupling shear deformation,facilitating the activation of non-basal slip systems.The DEPT evidently improved the hardness of the SZ from 58 to 92 HV and increased tensile strength from 234 MPa to 325 MPa while maintaining an elongation of 23.8%,achieving an optimal strengthductility balance.This work presents a one-step approach for tailoring microstructural heterogeneity and enhancing mechanical properties in AZ91D/ZrO_(2) composites using the DEPT FSP technique.The method provides an effective strategy for mitigating the strength-ductility trade-off commonly observed in Mg alloys.展开更多
A novel double side friction stir Z shape lap-butt welding(DS-FSZW)process was proposed to achieve excellent mechanical properties of Al/Cu medium-thick dissimilar joints.The influence of welding parameters on weld mi...A novel double side friction stir Z shape lap-butt welding(DS-FSZW)process was proposed to achieve excellent mechanical properties of Al/Cu medium-thick dissimilar joints.The influence of welding parameters on weld microstructure and properties of DS-FSZW joint were systematically investigated.It indicated that defect-free medium-thick Al/Cu DS-FSZW joint could be achieved under an optimal welding parameter.DS-FSZW joint was prone to form void defects in the bottom of the second-pass weld.The recrystallization mechanisms at the top and middle of the weld nugget zone(WNZ)were continuous dynamic recrystallization(CDRX)and geometric dynamic recrystallization(GDRX).While the major recrystallization mechanism at the bottom of the WNZ was GDRX.DS-FSZW joint of the optimal welding condition with 850 r/min-400 mm/min was produced with a continuous thin and crack-free IMCs layer at the Al/Cu interface,and the maximum tensile strength of this joint is 160.57 MPa,which is equivalent to 65.54%of pure Cu base material.Moreover,the corrosion resistance of Al/Cu DS-FSZW joints also achieved its maximum value at the optimal welding parameter of 850 r/min-400 mm/min.It demonstrates that the DS-FSZW process can simultaneously produce medium-thick Al/Cu joints with excellent mechanical performance and corrosion resistance.展开更多
基金the financial support from the Shandong Provincial Science Foundation for Outstanding Young Scholars(Grant No ZR2024YQ020)the National Natural Science Foundation of China(Grant Nos.52275349 and 52035005)+3 种基金the National Key Research and Development Program of China(Grant No 2022YFB4600902)the Excellent Young Team Project of Central Universities(No.2023QNTD002)Key Research and Development Program of Shandong Province(Grant No 2021ZLGX01)sponsored by the China/Shandong University International Postdoctoral Exchange Program.
文摘The inherent trade-off between ductility and strength in Mg alloys remains a significant challenge,primarily governed by microstructural distribution and texture characteristics.Friction stir processing(FSP),a severe plastic deformation(SPD)technique,refines microstructures by generating fine grains,uniformly dispersed fragmented particles,and a high fraction of high-angle grain boundaries(HAGBs),thereby facilitating superplastic forming at high strain rates and low temperatures.In the present work,a dual eccentric-pin tool(DEPT)FSP was employed to incorporate ZrO_(2) particles into a 6 mm thick AZ91D Mg alloy,leading to the formation of high volume{10-12}twins,dislocations,and β-Mg_(17)Al_(12) precipitates within the stirred zone.The microstructural evolution and mechanical behaviour of the stir zone under various process parameters were analysed using scanning electron microscopy(SEM),X-ray diffraction(XRD),electron backscatter diffraction(EBSD),and transmission electron microscopy(TEM).The DEPT enhanced plastic shearing and dynamic recrystallization,significantly reducing the grain size from 15.6μm to 2.35μm while promoting uniform dislocation distribution within the stir zone(SZ).Grain orientation analysis revealed a transition from basal to prismatic texture dominance(29.3% volume fraction)due to intensified radial-tangential coupling shear deformation,facilitating the activation of non-basal slip systems.The DEPT evidently improved the hardness of the SZ from 58 to 92 HV and increased tensile strength from 234 MPa to 325 MPa while maintaining an elongation of 23.8%,achieving an optimal strengthductility balance.This work presents a one-step approach for tailoring microstructural heterogeneity and enhancing mechanical properties in AZ91D/ZrO_(2) composites using the DEPT FSP technique.The method provides an effective strategy for mitigating the strength-ductility trade-off commonly observed in Mg alloys.
基金Supported by National Natural Science Foundation of China(Grant Nos.52275349,52035005)Key Research and Development Program of Shandong Province of China(Grant No.2021ZLGX01)Qilu Young Scholar Program of Shandong University of China.
文摘A novel double side friction stir Z shape lap-butt welding(DS-FSZW)process was proposed to achieve excellent mechanical properties of Al/Cu medium-thick dissimilar joints.The influence of welding parameters on weld microstructure and properties of DS-FSZW joint were systematically investigated.It indicated that defect-free medium-thick Al/Cu DS-FSZW joint could be achieved under an optimal welding parameter.DS-FSZW joint was prone to form void defects in the bottom of the second-pass weld.The recrystallization mechanisms at the top and middle of the weld nugget zone(WNZ)were continuous dynamic recrystallization(CDRX)and geometric dynamic recrystallization(GDRX).While the major recrystallization mechanism at the bottom of the WNZ was GDRX.DS-FSZW joint of the optimal welding condition with 850 r/min-400 mm/min was produced with a continuous thin and crack-free IMCs layer at the Al/Cu interface,and the maximum tensile strength of this joint is 160.57 MPa,which is equivalent to 65.54%of pure Cu base material.Moreover,the corrosion resistance of Al/Cu DS-FSZW joints also achieved its maximum value at the optimal welding parameter of 850 r/min-400 mm/min.It demonstrates that the DS-FSZW process can simultaneously produce medium-thick Al/Cu joints with excellent mechanical performance and corrosion resistance.