Ce3+/Dy3+/Tb3+/Eu3+/Mn2+and Cr3+ions co-doped Zn3 Al2 Ge2 O10 phosphor were prepared by a hightemperature solid-state method.X-ray diffraction patterns prove the cubic phase structure of prepared Zn3 Al2 Ge2 O10 phosp...Ce3+/Dy3+/Tb3+/Eu3+/Mn2+and Cr3+ions co-doped Zn3 Al2 Ge2 O10 phosphor were prepared by a hightemperature solid-state method.X-ray diffraction patterns prove the cubic phase structure of prepared Zn3 Al2 Ge2 O10 phosphor,Emission,excitation spectra and decay curves confirm the tunable luminescence.Different degrees of the decrease of emission FWHM in Zn3 Al2 Ge2 O10:0.02 Cr3+,RE(RE=Ce3+,Dy3+,Tb3+,Eu3+)and Zn3 Al2 Ge2 O10:0.02 Cr3+,Mn2+are observed.The reason of variable FWHM is the effect of crystal field splitting and nephelauxetic effect,and the nephelauxetic effect is dominant.Therefore,the emission FWHM decreases with the increasing concentration of Mn2+/Tb3+/Eu3+in Zn3 Al2 Ge2 O10:0.02 Cr3+,and for Zn3 Al2 Ge2 O10:0.02 Cr3+,Ce3+and Zn3 Al2 Ge2 O10:0.02 Cr3+,Dy3+,it is a constant.The variation of Zn3 Al2 Ge2 O10:0.02 Cr3+,Tb3+is more obvious than that of Zn3 Al2 Ge2 O10:0.02 Cr3+,Eu3+,because Tb3+ion has smaller electronegativity.Thus,the tunable luminescence of Cr3+can be realized by co-doping different ions.And these phosphors have potential applications in light-emitting diodes for plant growth.展开更多
The performance of the metal halide perovskite solar cells(PSCs)highly relies on the experimental parameters,including the fabrication processes and the compositions of the perovskites;tremendous experimental work has...The performance of the metal halide perovskite solar cells(PSCs)highly relies on the experimental parameters,including the fabrication processes and the compositions of the perovskites;tremendous experimental work has been done to optimize these factors.However,predicting the device performance of the PSCs from the fabrication parameters before experiments is still challenging.Herein,we bridge this gap by machine learning(ML)based on a dataset including 1072 devices from peer-reviewed publications.The optimized ML model accurately predicts the PCE from the experimental parameters with a root mean square error of 1.28%and a Pearson coefficientr of 0.768.Moreover,the factors governing the device performance are ranked by shapley additive explanations(SHAP),among which,A-site cation is crucial to getting highly efficient PSCs.Experiments and density functional theory calculations are employed to validate and help explain the predicting results by the ML model.Our work reveals the feasibility of ML in predicting the device performance from the experimental parameters before experiments,which enables the reverse experimental design toward highly efficient PSCs.展开更多
Interface engineering is proved to be the most important strategy to push the device performance of the perovskite solar cell(PSC) to its limit, and numerous works have been conducted to screen efficient materials. He...Interface engineering is proved to be the most important strategy to push the device performance of the perovskite solar cell(PSC) to its limit, and numerous works have been conducted to screen efficient materials. Here, on the basis of the previous studies, we employ machine learning to map the relationship between the interface material and the device performance, leading to intelligently screening interface materials towards minimizing voltage losses in p-i-n type PSCs. To enhance the explainability of the machine learning models, molecular descriptors are used to represent the materials. Furthermore,experimental analysis with different characterization methods and device simulation based on the drift-diffusion physical model are conducted to get physical insights and validate the machine learning models. Accordingly, 3-thiophene ethylamine hydrochloride(Th EACl) is screened as an example, which enables remarkable improvements in VOCand PCE of the PSCs. Our work reveals the critical role of datadriven analysis in the high throughput screening of interface materials, which will significantly accelerate the exploration of new materials for high-efficiency PSCs.展开更多
Inorganic lead halide perovskite nanocrystals(NCs)with superior photoelectric properties are expected to have excellent performance in many fields.However,the anion exchange changes their features and is unfavorable f...Inorganic lead halide perovskite nanocrystals(NCs)with superior photoelectric properties are expected to have excellent performance in many fields.However,the anion exchange changes their features and is unfavorable for their applications in many fields.Hence,impeding anion exchange is important for improving the composition stability of inorganic lead halide perovskite NCs.Herein,CsPb X3(X=Cl,Br)NCs are coated with Cs4PbX6 shell to impede anion exchange and reduce anion mobility.The Cs4PbX6 shell is facily fabricated on CsPbX3 NCs through high temperature injection method.Anion exchange experiments demonstrate that the Cs4 PbX6 shell completely encapsulates CsPbX3 NCs and greatly improves the composition stability of CsPbX3 NCs.Moreover,our work also sheds light on the potential design approaches of various heterostructures to expand the application of CsPbM3(M=Cl,Br,I)NCs.展开更多
Artificial intelligence(AI)is profoundly reshaping the discovery and design of organic light-emitting diode(OLED)materials,shifting conventional intuition-driven development into an integrated,datadriven paradigm.The ...Artificial intelligence(AI)is profoundly reshaping the discovery and design of organic light-emitting diode(OLED)materials,shifting conventional intuition-driven development into an integrated,datadriven paradigm.The increasing demand for high-performance OLED emitters with ultra-narrow emission spectrum and enhanced operational stability has highlighted the urgent need for a dedicated,multi-scale computational framework tailored to OLED-specific challenges.This review proposes a systematic AI-driven framework that combines quantum chemistry calculations,property prediction models,and generative algorithms to enable high-throughput screening and inverse design workflows for organic luminescent materials.Each component is critically analyzed in terms of theoretical underpinnings,practical benefits,inherent limitations,and avenues for further optimization.By presenting detailed case studies,we elucidate how AI approaches can tackle key bottlenecks in OLED material discovery and development.Moreover,we highlight essential future directions,including the integration of domain-specific expertise,the establishment of high-quality experimentally validated datasets,and the creation of molecular generation models specifically adapted for luminescent materials.Overall,this review aims to provide a comprehensive roadmap for advancing AI-guided materials research,offering transferable insights that extend beyond OLEDs to a broad range of organic optoelectronic materials.展开更多
Controlling the morphology of the MAPbI3-xClx active layer has remained a challenge towards advancing perovskite solar cells (PvSCs). Here, we demonstrate that a low temperature additive dripping (AD) treatment st...Controlling the morphology of the MAPbI3-xClx active layer has remained a challenge towards advancing perovskite solar cells (PvSCs). Here, we demonstrate that a low temperature additive dripping (AD) treatment step, using diphenyl ether (DPE), can significantly improve the power conversion efficiency (PCE), compared to the control device using chlorobenzene (CB), by 15% up to 16.64%, with a high current density (Jsc) of 22.67 mA/cm^2. We chose DPE for its small and appropriate dipole moment to adjust the solubility of the MAPbI3-xClx precursor during the formation of the intermediate phase and the MAPbI3-xClx phase. The low DPE vapor pressure provides a longer processing window for the removal of residual dimethylformamide (DMF), during the annealing process, for improved perovskite formation. Imaging and X-ray analysis both reveal that the MAPbI3-xClx film exhibits enlarged grains with increased crystallinity. Together, these improvements result in reduced carrier recombination and hole trap-state density in the MAPbI3-xClx film, while minimizing the hysteresis problem typical of PvSCs. These results show that the AD approach is a promising technique for improving PvSCs.展开更多
A novel sextuple hydrogen-bonding (HB) self-assembly molecular duplex bearing red-emitting perylene diimide (PDI) fluorophores, namely PDIHB, was synthesized, and its molecular structure was confirmed by IH NMR, 1...A novel sextuple hydrogen-bonding (HB) self-assembly molecular duplex bearing red-emitting perylene diimide (PDI) fluorophores, namely PDIHB, was synthesized, and its molecular structure was confirmed by IH NMR, 13C NMR, TOF-MS and 2D NMR. Compared with the small molecular reference compound PDI, PDIItB shows one time enhanced fluorescence efficiency in solid state (4.1% vs. 2.1%). More importantly, the presence of bulky HB oli- goamide strands in PDIHB could trigger effective spatial separation between vip and host fluorophores in thin solid film state, hence inefficient energy transfer occurs between the blue-emitting host 2TPhNII/B and red vip PDIHB in the 2 wt% vip/host blending film. As a result, a solution-processed organic light-emitting diode (OLED) with quite simple device structure of ITO/PEDOT:PSS (40 nm)/PVK (40 nm)/PDIHB (2 wt%): 2TPhNII-IB (50 nm)/LiF (0.8 nm)/A1 (100 nm) could emit bias-independent warm-white electroluminescence with stable Commission Intemationale de L'Eclairage coordinates of (0.42, 0.33), and the maximum brightness and current efficiency of this device are 260 cdom-2 and 0.49 cd·A-1, respectively. All these results indicated that HB self-assembly supramolecular fluorophores could act as prospective materials for white OLED application.展开更多
The effects of MoO3thin buffer layer on charge carrier injection and extraction in inverted configuration ITO/ZnO/MEH-PPV(poly(2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene))/MoO3(0,5 nm)/Ag hybrid solar cells a...The effects of MoO3thin buffer layer on charge carrier injection and extraction in inverted configuration ITO/ZnO/MEH-PPV(poly(2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene))/MoO3(0,5 nm)/Ag hybrid solar cells are investigated by capacitance–voltage measurement under dark and light illumination conditions.The efficiency of charge carrier injection and extraction is enhanced by inserting 5 nm MoO3thin layer,resulting in better device performances.Charge carrier transport of the whole device is improved and the interface energy barrier is reduced by inserting 5 nm MoO3thin buffer layer.The device fill factor is increased from 54.1%to 57.5%after modifying 5 nm MoO3.Simulations and experimental results consistently show that in the forward voltage under dark,the device with the 5 nm MoO3thin layer modification generates larger value of capacitance than the device without MoO3layer.While under illumination,the device with the 5 nm MoO3layer generates smaller value of capacitance than the device without the 5 nm MoO3layer in the bias region of reverse and before the peak position of maximum capacitance(VCmax).The underlying mechanism of the MoO3anode buffer layer on device current density–voltage characteristics is discussed.展开更多
基金Projects supported by the National Natural Science Foundation of China(61575019,11474018,61775013),ChinaThe authors express the thanks to the Fundamental ResearchFunds for the Central Universities under Grant No. 2018YJS166,China and the Fundamental Research Funds for the Central Universitieswith the Grant No. 2016JBM066,No. 2017RC015, No.2017JBZ105, China.
文摘Ce3+/Dy3+/Tb3+/Eu3+/Mn2+and Cr3+ions co-doped Zn3 Al2 Ge2 O10 phosphor were prepared by a hightemperature solid-state method.X-ray diffraction patterns prove the cubic phase structure of prepared Zn3 Al2 Ge2 O10 phosphor,Emission,excitation spectra and decay curves confirm the tunable luminescence.Different degrees of the decrease of emission FWHM in Zn3 Al2 Ge2 O10:0.02 Cr3+,RE(RE=Ce3+,Dy3+,Tb3+,Eu3+)and Zn3 Al2 Ge2 O10:0.02 Cr3+,Mn2+are observed.The reason of variable FWHM is the effect of crystal field splitting and nephelauxetic effect,and the nephelauxetic effect is dominant.Therefore,the emission FWHM decreases with the increasing concentration of Mn2+/Tb3+/Eu3+in Zn3 Al2 Ge2 O10:0.02 Cr3+,and for Zn3 Al2 Ge2 O10:0.02 Cr3+,Ce3+and Zn3 Al2 Ge2 O10:0.02 Cr3+,Dy3+,it is a constant.The variation of Zn3 Al2 Ge2 O10:0.02 Cr3+,Tb3+is more obvious than that of Zn3 Al2 Ge2 O10:0.02 Cr3+,Eu3+,because Tb3+ion has smaller electronegativity.Thus,the tunable luminescence of Cr3+can be realized by co-doping different ions.And these phosphors have potential applications in light-emitting diodes for plant growth.
基金the National Natural Science Foundation of China(Grant No.62075006)the National Key Research and Development Program of China(Grant No.2021YFB3600403)the Natural Science Talents Foundation(Grant No.KSRC22001532)。
文摘The performance of the metal halide perovskite solar cells(PSCs)highly relies on the experimental parameters,including the fabrication processes and the compositions of the perovskites;tremendous experimental work has been done to optimize these factors.However,predicting the device performance of the PSCs from the fabrication parameters before experiments is still challenging.Herein,we bridge this gap by machine learning(ML)based on a dataset including 1072 devices from peer-reviewed publications.The optimized ML model accurately predicts the PCE from the experimental parameters with a root mean square error of 1.28%and a Pearson coefficientr of 0.768.Moreover,the factors governing the device performance are ranked by shapley additive explanations(SHAP),among which,A-site cation is crucial to getting highly efficient PSCs.Experiments and density functional theory calculations are employed to validate and help explain the predicting results by the ML model.Our work reveals the feasibility of ML in predicting the device performance from the experimental parameters before experiments,which enables the reverse experimental design toward highly efficient PSCs.
基金supported by the National Natural Science Foundation of China (62075006)the National Key R&D Program of China (2018YFB1500200)。
文摘Interface engineering is proved to be the most important strategy to push the device performance of the perovskite solar cell(PSC) to its limit, and numerous works have been conducted to screen efficient materials. Here, on the basis of the previous studies, we employ machine learning to map the relationship between the interface material and the device performance, leading to intelligently screening interface materials towards minimizing voltage losses in p-i-n type PSCs. To enhance the explainability of the machine learning models, molecular descriptors are used to represent the materials. Furthermore,experimental analysis with different characterization methods and device simulation based on the drift-diffusion physical model are conducted to get physical insights and validate the machine learning models. Accordingly, 3-thiophene ethylamine hydrochloride(Th EACl) is screened as an example, which enables remarkable improvements in VOCand PCE of the PSCs. Our work reveals the critical role of datadriven analysis in the high throughput screening of interface materials, which will significantly accelerate the exploration of new materials for high-efficiency PSCs.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11474018,61704007,and 61575019)the National Key Research and Development Program of China(Grant No.2017YFB0404501)+1 种基金the Fundamental Research Funds for the Central Universities,China(Grant No.2017RC034)the Shenzhen China Star Optoelectronics Technology Co.,Ltd
文摘Inorganic lead halide perovskite nanocrystals(NCs)with superior photoelectric properties are expected to have excellent performance in many fields.However,the anion exchange changes their features and is unfavorable for their applications in many fields.Hence,impeding anion exchange is important for improving the composition stability of inorganic lead halide perovskite NCs.Herein,CsPb X3(X=Cl,Br)NCs are coated with Cs4PbX6 shell to impede anion exchange and reduce anion mobility.The Cs4PbX6 shell is facily fabricated on CsPbX3 NCs through high temperature injection method.Anion exchange experiments demonstrate that the Cs4 PbX6 shell completely encapsulates CsPbX3 NCs and greatly improves the composition stability of CsPbX3 NCs.Moreover,our work also sheds light on the potential design approaches of various heterostructures to expand the application of CsPbM3(M=Cl,Br,I)NCs.
基金supported by the Beijing Natural Science Foundation(2242054)the National Natural Science Foundation of China(62075006 and 62475177)。
文摘Artificial intelligence(AI)is profoundly reshaping the discovery and design of organic light-emitting diode(OLED)materials,shifting conventional intuition-driven development into an integrated,datadriven paradigm.The increasing demand for high-performance OLED emitters with ultra-narrow emission spectrum and enhanced operational stability has highlighted the urgent need for a dedicated,multi-scale computational framework tailored to OLED-specific challenges.This review proposes a systematic AI-driven framework that combines quantum chemistry calculations,property prediction models,and generative algorithms to enable high-throughput screening and inverse design workflows for organic luminescent materials.Each component is critically analyzed in terms of theoretical underpinnings,practical benefits,inherent limitations,and avenues for further optimization.By presenting detailed case studies,we elucidate how AI approaches can tackle key bottlenecks in OLED material discovery and development.Moreover,we highlight essential future directions,including the integration of domain-specific expertise,the establishment of high-quality experimentally validated datasets,and the creation of molecular generation models specifically adapted for luminescent materials.Overall,this review aims to provide a comprehensive roadmap for advancing AI-guided materials research,offering transferable insights that extend beyond OLEDs to a broad range of organic optoelectronic materials.
基金The authors gratefully acknowledge the Fundamental Research Funds for the Central Universities (No. S16JB00060), the National Science Foundation, NSF- PECASE award (No. CBET-0954985) and the National Natural Science Foundation of China (No. 61575019) for partial support of this work. D. H. also thanks the support from the China Scholarship Council. The AFM SEM used were supported by the Yale Institute for Nanoscience and Quantum Engineering (YINQE) and NSF MRSEC DMR 1119826 for Center for Research on Interface Structures and Phenomena (CRISP). The GIWAXS obtained at 1W1A, BSRF. The authors further thank scientists of Diffuse X-ray Scattering Station in the experiments for the assistance with GIWAXS measurements, as well as Dr. Yuchuan Shao from the Depai-anent of Electrical Engineering, Yale University for the useful discussion.
文摘Controlling the morphology of the MAPbI3-xClx active layer has remained a challenge towards advancing perovskite solar cells (PvSCs). Here, we demonstrate that a low temperature additive dripping (AD) treatment step, using diphenyl ether (DPE), can significantly improve the power conversion efficiency (PCE), compared to the control device using chlorobenzene (CB), by 15% up to 16.64%, with a high current density (Jsc) of 22.67 mA/cm^2. We chose DPE for its small and appropriate dipole moment to adjust the solubility of the MAPbI3-xClx precursor during the formation of the intermediate phase and the MAPbI3-xClx phase. The low DPE vapor pressure provides a longer processing window for the removal of residual dimethylformamide (DMF), during the annealing process, for improved perovskite formation. Imaging and X-ray analysis both reveal that the MAPbI3-xClx film exhibits enlarged grains with increased crystallinity. Together, these improvements result in reduced carrier recombination and hole trap-state density in the MAPbI3-xClx film, while minimizing the hysteresis problem typical of PvSCs. These results show that the AD approach is a promising technique for improving PvSCs.
文摘A novel sextuple hydrogen-bonding (HB) self-assembly molecular duplex bearing red-emitting perylene diimide (PDI) fluorophores, namely PDIHB, was synthesized, and its molecular structure was confirmed by IH NMR, 13C NMR, TOF-MS and 2D NMR. Compared with the small molecular reference compound PDI, PDIItB shows one time enhanced fluorescence efficiency in solid state (4.1% vs. 2.1%). More importantly, the presence of bulky HB oli- goamide strands in PDIHB could trigger effective spatial separation between vip and host fluorophores in thin solid film state, hence inefficient energy transfer occurs between the blue-emitting host 2TPhNII/B and red vip PDIHB in the 2 wt% vip/host blending film. As a result, a solution-processed organic light-emitting diode (OLED) with quite simple device structure of ITO/PEDOT:PSS (40 nm)/PVK (40 nm)/PDIHB (2 wt%): 2TPhNII-IB (50 nm)/LiF (0.8 nm)/A1 (100 nm) could emit bias-independent warm-white electroluminescence with stable Commission Intemationale de L'Eclairage coordinates of (0.42, 0.33), and the maximum brightness and current efficiency of this device are 260 cdom-2 and 0.49 cd·A-1, respectively. All these results indicated that HB self-assembly supramolecular fluorophores could act as prospective materials for white OLED application.
基金supported by the National Basic Research Program of China(2010CB327704)the Research Fund for the Doctoral Program of Higher Education(20130009130001)+3 种基金the National Natural Science Foundation of China(51272022)the Research Fund for the Doctoral Program of Higher Education(20120009130005)the Program for New Century Excellent Talents in University of Ministry of Education of China(NCET-10-0220)the Fundamental Research Funds for the Central Universities(2012JBZ001)
文摘The effects of MoO3thin buffer layer on charge carrier injection and extraction in inverted configuration ITO/ZnO/MEH-PPV(poly(2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene))/MoO3(0,5 nm)/Ag hybrid solar cells are investigated by capacitance–voltage measurement under dark and light illumination conditions.The efficiency of charge carrier injection and extraction is enhanced by inserting 5 nm MoO3thin layer,resulting in better device performances.Charge carrier transport of the whole device is improved and the interface energy barrier is reduced by inserting 5 nm MoO3thin buffer layer.The device fill factor is increased from 54.1%to 57.5%after modifying 5 nm MoO3.Simulations and experimental results consistently show that in the forward voltage under dark,the device with the 5 nm MoO3thin layer modification generates larger value of capacitance than the device without MoO3layer.While under illumination,the device with the 5 nm MoO3layer generates smaller value of capacitance than the device without the 5 nm MoO3layer in the bias region of reverse and before the peak position of maximum capacitance(VCmax).The underlying mechanism of the MoO3anode buffer layer on device current density–voltage characteristics is discussed.