Groundwater,the world’s largest freshwater supply,is facing increasing strain due to various uses such as agriculture,industry,livestock,and household.This study aims to investigate groundwater prospective zonation i...Groundwater,the world’s largest freshwater supply,is facing increasing strain due to various uses such as agriculture,industry,livestock,and household.This study aims to investigate groundwater prospective zonation in the Bandu Sub-watershed in Purulia,West Bengal,using the AHP model and RS&GIS methodologies.To achieve Goal 6 of the UN-initiated 17 SDGs,it is crucial to determine the spatial distribution of groundwater prospective zones village-by-village,with 1/3 of the regions falling under red alert zones for sustainable development.The 16 most crucial elements affecting groundwater prospective zones(GWPZs)were mapped using AHP,and the final prospective map was obtained through Weighted Overlay analysis.The study identified five different classes within the Sub-watershed as excellent,good,moderate,poor,and very poor.The validation results showed that the approach used to derive GWPZ is reliable,and the results can be applied to future sustainable developments to reduce water shortages through suitable management methods.The research aims to increase the effectiveness of sustainable groundwater zone management,ensuring long-term water management and access.展开更多
文摘Groundwater,the world’s largest freshwater supply,is facing increasing strain due to various uses such as agriculture,industry,livestock,and household.This study aims to investigate groundwater prospective zonation in the Bandu Sub-watershed in Purulia,West Bengal,using the AHP model and RS&GIS methodologies.To achieve Goal 6 of the UN-initiated 17 SDGs,it is crucial to determine the spatial distribution of groundwater prospective zones village-by-village,with 1/3 of the regions falling under red alert zones for sustainable development.The 16 most crucial elements affecting groundwater prospective zones(GWPZs)were mapped using AHP,and the final prospective map was obtained through Weighted Overlay analysis.The study identified five different classes within the Sub-watershed as excellent,good,moderate,poor,and very poor.The validation results showed that the approach used to derive GWPZ is reliable,and the results can be applied to future sustainable developments to reduce water shortages through suitable management methods.The research aims to increase the effectiveness of sustainable groundwater zone management,ensuring long-term water management and access.