We perform benchmark calculations of the p-wave resonances in the exponentially cosine screened Coulomb potential using the uniform complex-scaling generalized pseudo-spectral method.The present results show significa...We perform benchmark calculations of the p-wave resonances in the exponentially cosine screened Coulomb potential using the uniform complex-scaling generalized pseudo-spectral method.The present results show significant improvement in calculation accuracy compared to previous predictions and correct the misidentification of resonance electron configuration in previous works.It is found that the resonance states approximately follow an n^(2)-scaling law which is similar to the bound counterparts.The birth of a new resonance would distort the trajectory of an adjacent higher-lying resonance.展开更多
The relativistic binary-encounter-Bethe model with Wannier-type threshold law is employed to obtain the inner-shell ionization cross sections of multi-electron atoms(Ni,Cu,Y,Ag,Au,Yb,Ta,and Pb)for positron impact ener...The relativistic binary-encounter-Bethe model with Wannier-type threshold law is employed to obtain the inner-shell ionization cross sections of multi-electron atoms(Ni,Cu,Y,Ag,Au,Yb,Ta,and Pb)for positron impact energies from the thresholds up to 105ke V.There is good agreement between the present calculations and the experimental data.The constant in the acceleration term derived from the Wannier law is determined to be 0.2 and 0.5 for the K-and L-shells,respectively.展开更多
A fully relativistic distorted-wave program is developed based on the Grasp92 and Ratip packages to calculate electron impact excitation (EIE) cross sections. As a first application of the program, the EIE cross sec...A fully relativistic distorted-wave program is developed based on the Grasp92 and Ratip packages to calculate electron impact excitation (EIE) cross sections. As a first application of the program, the EIE cross sections of Be-like C^α+ ions from the metastable 1s^22s2p^3 p to 1s^22p^2 ^3 p excitation and the inner-shell excitations are calculated systematically. Meanwhile, the correlation effects of target states are discussed. It is found that the correlation effects play an important role in the low energy EIE cross sections. An excellent agreement is found when the results are compared with previous calculations and recent measurements.展开更多
The photo-excitation and Auger decay processes of inner-shell double vacancy states 1s2s2p^6(1,3^S)3s3p of neutral neon atoms have been studied theoretically. Multi-configuration Dirac-Fock (MCDF) calculations hav...The photo-excitation and Auger decay processes of inner-shell double vacancy states 1s2s2p^6(1,3^S)3s3p of neutral neon atoms have been studied theoretically. Multi-configuration Dirac-Fock (MCDF) calculations have been carried out, with electron correlation effects taken into consideration. The relaxation of core and excited orbitals and configuration interaction are found to be crucial to creating the double vacancy states by single photo-absorption. The predominant decay paths for the double vacancy states turn out to be of the LLM Auger decay to 1s 2s^22p^53s(3p), KLL Auger decay to 1s^22s2p^43s3p, and KLM Auger decay to 1s^22p^63s(3p). They lead to further Auger decay, creating the neon ions of multiple charge states. For both double and single vacancy states the spectator type of Auger process is dominated in all the Auger decay processes. Theoretical Anger electron spectra are presented for further investigations, experimental and theoretical.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.12174147)the Chinese Scholarship Council(Grant Nos.202108210152 and 202006175016).
文摘We perform benchmark calculations of the p-wave resonances in the exponentially cosine screened Coulomb potential using the uniform complex-scaling generalized pseudo-spectral method.The present results show significant improvement in calculation accuracy compared to previous predictions and correct the misidentification of resonance electron configuration in previous works.It is found that the resonance states approximately follow an n^(2)-scaling law which is similar to the bound counterparts.The birth of a new resonance would distort the trajectory of an adjacent higher-lying resonance.
基金supported by the National Natural Science Foundation of China(Grant No.12174147)the Chinese Scholarship Council(Grant Nos.202108210152 and 202006175016).
文摘The relativistic binary-encounter-Bethe model with Wannier-type threshold law is employed to obtain the inner-shell ionization cross sections of multi-electron atoms(Ni,Cu,Y,Ag,Au,Yb,Ta,and Pb)for positron impact energies from the thresholds up to 105ke V.There is good agreement between the present calculations and the experimental data.The constant in the acceleration term derived from the Wannier law is determined to be 0.2 and 0.5 for the K-and L-shells,respectively.
基金Supported by the National Natural Science Foundation of China under Grant Nos 10376026 and 10434100, the Foundation for the Excellent Youth Scholars of the Ministry of Education of China.
文摘A fully relativistic distorted-wave program is developed based on the Grasp92 and Ratip packages to calculate electron impact excitation (EIE) cross sections. As a first application of the program, the EIE cross sections of Be-like C^α+ ions from the metastable 1s^22s2p^3 p to 1s^22p^2 ^3 p excitation and the inner-shell excitations are calculated systematically. Meanwhile, the correlation effects of target states are discussed. It is found that the correlation effects play an important role in the low energy EIE cross sections. An excellent agreement is found when the results are compared with previous calculations and recent measurements.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10434100,10774122)the Core-University Program between Japanese Society of Promotion of Science and Chinese Academy of Sciences+1 种基金the Foundation of Center of Theoretical Nuclear Physics of National Laboratory of Heavy Ion Accelerator of Lanzhouthe Foundation of Northwest Normal University (Grant No NWNU-KJCXGC-03-21)
文摘The photo-excitation and Auger decay processes of inner-shell double vacancy states 1s2s2p^6(1,3^S)3s3p of neutral neon atoms have been studied theoretically. Multi-configuration Dirac-Fock (MCDF) calculations have been carried out, with electron correlation effects taken into consideration. The relaxation of core and excited orbitals and configuration interaction are found to be crucial to creating the double vacancy states by single photo-absorption. The predominant decay paths for the double vacancy states turn out to be of the LLM Auger decay to 1s 2s^22p^53s(3p), KLL Auger decay to 1s^22s2p^43s3p, and KLM Auger decay to 1s^22p^63s(3p). They lead to further Auger decay, creating the neon ions of multiple charge states. For both double and single vacancy states the spectator type of Auger process is dominated in all the Auger decay processes. Theoretical Anger electron spectra are presented for further investigations, experimental and theoretical.