Among their several unique properties,the high electrical conductivity and mechanical strength of carbon nanofibers make them suitable for applications such as catalyst support for fuel cells,flexible electrode materi...Among their several unique properties,the high electrical conductivity and mechanical strength of carbon nanofibers make them suitable for applications such as catalyst support for fuel cells,flexible electrode materials for secondary batteries,and sensors.However,their performance requires improvement for practical applications.Several methods have been pursued to achieve this,such as growing carbon nanotubes from carbon nanofibers;however,the transition metal catalyst used to grow carbon nanotubes causes problems,including side reactions.This study attempts to address this issue by growing numerous branched carbon nanofibers from the main carbon nanofibers using alkali metals.Excellent electrical conductivity is achieved by growing densely branched carbon nanofibers.Consequently,a current collector,binder,and conductive material-free anode material is realized,exhibiting excellent electrochemical performance compared with existing carbon nanofibers.The proposed method is expected to be a powerful tool for secondary batteries and have broad applicability to various fields.展开更多
基金supported by the Ministry of Education of the Republic of Korea and the National Research Foundation of Korea(NRF2023R1A2C2004191)supported by Korea Basic Science Institute(National research Facilities and Equipment Center)grant funded by Ministry of Education(grant No.2022R1A6C101B738).
文摘Among their several unique properties,the high electrical conductivity and mechanical strength of carbon nanofibers make them suitable for applications such as catalyst support for fuel cells,flexible electrode materials for secondary batteries,and sensors.However,their performance requires improvement for practical applications.Several methods have been pursued to achieve this,such as growing carbon nanotubes from carbon nanofibers;however,the transition metal catalyst used to grow carbon nanotubes causes problems,including side reactions.This study attempts to address this issue by growing numerous branched carbon nanofibers from the main carbon nanofibers using alkali metals.Excellent electrical conductivity is achieved by growing densely branched carbon nanofibers.Consequently,a current collector,binder,and conductive material-free anode material is realized,exhibiting excellent electrochemical performance compared with existing carbon nanofibers.The proposed method is expected to be a powerful tool for secondary batteries and have broad applicability to various fields.