Lithium-ion batteries are widely used in portable electronics and electric vehicles due to their high energy density,stable cycle life,and low self-discharge.However,irreversible lithium loss during the formation of t...Lithium-ion batteries are widely used in portable electronics and electric vehicles due to their high energy density,stable cycle life,and low self-discharge.However,irreversible lithium loss during the formation of the solid electrolyte interface greatly impairs energy density and cyclability.To compensate for the lithium loss,introducing an external lithium source,that is,a prelithiation agent,is an effective strategy to solve the above problems.Compared with other prelithiation strategies,cathode prelithiation is more cost-effective with simpler operation.Among various cathode prelithiation agents,we first systematically summarize the recent progress of Li_(2)S-based prelithiation agents,and then propose some novel strategies to tackle the current challenges.This review provides a comprehensive understanding of Li_(2)S-based prelithiation agents and new research directions in the future.展开更多
基金National Natural Science Foundation of China,Grant/Award Number:22002045Guangdong Basic and Applied Basic Research Foundation,Grant/Award Number:2023A1515030164+1 种基金Special Topics in Key Areas for Universities in Guangdong Province,Grant/Award Number:2023ZDZX3001Hong Kong Scholars Program 2022,Grant/Award Numbers:G-YZ5Y,XJ2022026。
文摘Lithium-ion batteries are widely used in portable electronics and electric vehicles due to their high energy density,stable cycle life,and low self-discharge.However,irreversible lithium loss during the formation of the solid electrolyte interface greatly impairs energy density and cyclability.To compensate for the lithium loss,introducing an external lithium source,that is,a prelithiation agent,is an effective strategy to solve the above problems.Compared with other prelithiation strategies,cathode prelithiation is more cost-effective with simpler operation.Among various cathode prelithiation agents,we first systematically summarize the recent progress of Li_(2)S-based prelithiation agents,and then propose some novel strategies to tackle the current challenges.This review provides a comprehensive understanding of Li_(2)S-based prelithiation agents and new research directions in the future.