期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
经股动脉导管主动脉瓣置换DSA技师术中配合
1
作者 丁海岭 黄颖华 +1 位作者 范思瑞 江薇 《中华介入放射学电子杂志》 2022年第3期268-271,共4页
目的总结经股动脉途径经导管主动脉瓣置换(TAVR)术中数字减影血管造影(DSA)技师配合要点及体会。方法回顾性分析2018年1月—2021年6月在我院完成的95例TAVR手术的技术配合。结果所有手术配合中,3例术中发生电影采集问题;4例发生对比剂... 目的总结经股动脉途径经导管主动脉瓣置换(TAVR)术中数字减影血管造影(DSA)技师配合要点及体会。方法回顾性分析2018年1月—2021年6月在我院完成的95例TAVR手术的技术配合。结果所有手术配合中,3例术中发生电影采集问题;4例发生对比剂注射问题;问题在术中均得以及时解决。结论DSA技师在TAVR术中的配合要点在于术前周密准备;术中良好沟通和精确操作;严格的辐射防护监督和良好的无菌观念;手术流程的全面理解;尤其在球囊扩张阻断和瓣膜支架释放时的有效技术配合,是促进手术安全、顺利实施的保证。 展开更多
关键词 经股动脉 经导管主动脉瓣置换术 技师
原文传递
Machine learning-guided design of high-performance Mg-based thermoelectrics:insights into thermal expansion effects
2
作者 Da Wan Shulin Bai +10 位作者 sirui fan Bixuan Li Xiaoya Huang Hongyuan Zhao Ziqi Wang Zhen Li Yu Liu Peng Kang Lei Zheng Li-Dong Zhao Huibin Xu 《Science Bulletin》 2025年第22期3764-3773,共10页
Mg-based thermoelectric materials are becoming ideal candidates for thermoelectric applications,owing to their eco-friendliness and abundant availability.To overcome the limitations of conventional experimental method... Mg-based thermoelectric materials are becoming ideal candidates for thermoelectric applications,owing to their eco-friendliness and abundant availability.To overcome the limitations of conventional experimental methods and accelerate the development of high-performance thermoelectric materials,this study leverages high-throughput computing and machine learning to perform a comprehensive and systematic evaluation of a vast array of Mg-based thermoelectric materials.Our findings highlight the pivotal role of thermal expansion in modulating the thermoelectric figure of merit(ZT)in Mg-based systems.Specifically,thermal expansion alters the interatomic interaction potential,enhancing material anharmonicity and significantly reducing lattice thermal conductivity.Furthermore,thermal expansion reduces energy band dispersion,leading to a more concentrated density of states near the Fermi level.This effect increases effective mass,thereby potentially boosting the Seebeck coefficient.These insights not only deepen the understanding of the physical mechanisms by which thermal expansion influences thermoelectric performance but also establish a universal theoretical framework for optimizing high-performance thermoelectric materials.To accelerate the discovery and application of Mg-based thermoelectric materials,we have developed an XGBoost model with high predictive accuracy and robust generalization performance.This model enables the precise prediction of thermoelectric properties,providing a tool for rapid screening and optimization of Mg-based thermoelectric materials. 展开更多
关键词 Machine learning Mg-based thermoelectrics Thermal expansion regulation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部