期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Laser Melting vs.Laser Sintering:Large Area Heat Processing of Lunar South Pole Simulant
1
作者 Juan-Carlos Ginés-Palomares Julian Baasch +4 位作者 simon stapperfend Leonardo Facchini Stefan Linke Enrico Stoll Jens Günster 《Additive Manufacturing Frontiers》 2025年第3期61-73,共13页
A key component of future lunar missions is the concept of in-situ resource utilization(ISRU),which involves the use of local resources to support human missions and reduce dependence on Earth-based supplies.This pape... A key component of future lunar missions is the concept of in-situ resource utilization(ISRU),which involves the use of local resources to support human missions and reduce dependence on Earth-based supplies.This paper investigates the thermal processing capability of lunar regolith without the addition of binders,with a focus on large-scale applications for the construction of lunar habitats and infrastructure.The study used a simulant of lunar regolith found on the Schr?dinger Basin in the South Pole region.This regolith simulant consists of20 wt%basalt and 80 wt%anorthosite.Experiments were conducted using a high power CO_(2)laser to sinter and melt the regolith in a 80 mm diameter laser spot to evaluate the effectiveness of direct large area thermal processing.Results indicated that sintering begins at approximately 1180℃and reaches full melt at temperatures above 1360℃.Sintering experiments with this material revealed the formation of dense samples up to 11 mm thick,while melting experiments successfully produced larger samples by overlapping molten layers and additive manufacturing up to 50 mm thick.The energy efficiency of the sintering and melting processes was compared.The melting process was about 10 times more energy efficient than sintering in terms of material consolidation,demonstrating the promising potential of laser melting technologies of anorthosite-rich regolith for the production of structural elements. 展开更多
关键词 Laser sintering Laser melting Lunar construction REGOLITH In-situ resource utilization Additive manufacturing
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部