This study focused on the various surface treatments of grinding,Na OH etching,HCl pickling,micro-arc oxidation and anodic oxidation to strengthen adhesive bonding joint of Aluminum(Al)substrate and Carbon Fiber Reinf...This study focused on the various surface treatments of grinding,Na OH etching,HCl pickling,micro-arc oxidation and anodic oxidation to strengthen adhesive bonding joint of Aluminum(Al)substrate and Carbon Fiber Reinforced Plastics(CFRP).Different surface conditions were created by these treatments and simple Resin Pre-Coating(RPC)technique was further used to reduce the potential void defects at the root of those micro-cavities.Carbon Nanotubes(CNTs)were guided into the etched micro-cavities to construct quasi-Z-directional fiber bridging and form the“CNT-reinforced epoxy-pins”.The surface performance testing results imply that anodic oxidation of Al substrate created relatively even and continuous channels with higher hardness and better wettability among these treatments,which could provide quasi-vertical spaces for containing epoxy adhesive or CNTs.The single lap shear test results show combined treatments of anodic oxidation and upgraded RPC with CNTs technique on Al substrate yielded the highest bonding strength of 21.8 MPa(up to 243.3% greater than base strength).The constructed through-the-thickness“epoxy-pins”or“CNT-reinforced epoxy-pins”contributed to failure modes changing from complete debonding failure of Al substrate to peeled-off shallow fiber or delamination failure of CFRP panel.The combined treatments could be utilized to manufacture high-performance Al-CFRP composites for aviation industry application.展开更多
The high-performance Basalt Fiber Reinforced Polymer(BFRP)composites have been prepared by guiding Micro/Nano Short Aramid Fiber(MNSAF)into the interlayer to improve the resin-rich region and the interfacial transitio...The high-performance Basalt Fiber Reinforced Polymer(BFRP)composites have been prepared by guiding Micro/Nano Short Aramid Fiber(MNSAF)into the interlayer to improve the resin-rich region and the interfacial transition region,and the flexible fiber bridging claws of MNSAF were constructed to grasp the adjacent layers for stronger interlaminar bond.The lowvelocity impact results show that the MNSAF could improve the impact resistance of BFRP composites.The compression test results demonstrate that the compressive strength and the residual compressive strength after impact of MNSAF-reinforced BFRP composites were greater than those of unreinforced one,exhibiting the greatest 56.2% and 73.3% increments respectively for BFRP composites improved by 4wt%MNSAF.X-ray micro-computed tomography scanning results indicate that the“fiber bridging claws”contributed to better mechanical interlocking to inhibit the crack generation and propagation under impact and compression load,and the original delamination-dominated failure of unreinforced BFRP composites was altered into sheardominated failure of MNSAF-reinforced BFRP composites.Overall,the MNSAF interleaving might be an effective method in manufacturing high-performance laminated fiber in industrial production.展开更多
基金supported financially by the National Natural Science Foundations of China(No.52102115)the Natural Science Foundation of Sichuan Province,China(No.2025HJRC0019)+1 种基金the Basalt Fiber and Composite Key Laboratory of Sichuan Province,China(No.XXKFJJ202308)Shock and Vibration of Engineering Materials and Structures Key Lab of Sichuan Province,China(No.23kfgk06)。
文摘This study focused on the various surface treatments of grinding,Na OH etching,HCl pickling,micro-arc oxidation and anodic oxidation to strengthen adhesive bonding joint of Aluminum(Al)substrate and Carbon Fiber Reinforced Plastics(CFRP).Different surface conditions were created by these treatments and simple Resin Pre-Coating(RPC)technique was further used to reduce the potential void defects at the root of those micro-cavities.Carbon Nanotubes(CNTs)were guided into the etched micro-cavities to construct quasi-Z-directional fiber bridging and form the“CNT-reinforced epoxy-pins”.The surface performance testing results imply that anodic oxidation of Al substrate created relatively even and continuous channels with higher hardness and better wettability among these treatments,which could provide quasi-vertical spaces for containing epoxy adhesive or CNTs.The single lap shear test results show combined treatments of anodic oxidation and upgraded RPC with CNTs technique on Al substrate yielded the highest bonding strength of 21.8 MPa(up to 243.3% greater than base strength).The constructed through-the-thickness“epoxy-pins”or“CNT-reinforced epoxy-pins”contributed to failure modes changing from complete debonding failure of Al substrate to peeled-off shallow fiber or delamination failure of CFRP panel.The combined treatments could be utilized to manufacture high-performance Al-CFRP composites for aviation industry application.
基金supported financially by the National Natural Science Foundation of China(No.52102115)the High-end Foreign Expert Recruitment Plan of China(No.G2023036002L)+1 种基金the Basalt Fiber and Composite Key Laboratory of Sichuan Province,China(No.XXKFJJ202308)Shock and Vibration of Engineering Materials and Structures Key Lab of Sichuan Province,China(No.23kfgk06).
文摘The high-performance Basalt Fiber Reinforced Polymer(BFRP)composites have been prepared by guiding Micro/Nano Short Aramid Fiber(MNSAF)into the interlayer to improve the resin-rich region and the interfacial transition region,and the flexible fiber bridging claws of MNSAF were constructed to grasp the adjacent layers for stronger interlaminar bond.The lowvelocity impact results show that the MNSAF could improve the impact resistance of BFRP composites.The compression test results demonstrate that the compressive strength and the residual compressive strength after impact of MNSAF-reinforced BFRP composites were greater than those of unreinforced one,exhibiting the greatest 56.2% and 73.3% increments respectively for BFRP composites improved by 4wt%MNSAF.X-ray micro-computed tomography scanning results indicate that the“fiber bridging claws”contributed to better mechanical interlocking to inhibit the crack generation and propagation under impact and compression load,and the original delamination-dominated failure of unreinforced BFRP composites was altered into sheardominated failure of MNSAF-reinforced BFRP composites.Overall,the MNSAF interleaving might be an effective method in manufacturing high-performance laminated fiber in industrial production.