期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
Mechanochemical redox-based synthesis of highly porous CoxMn1-xOy catalysts for total oxidation 被引量:2
1
作者 Jiafeng Bao Hao Chen +1 位作者 shize yang Pengfei Zhang 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2020年第12期1846-1854,共9页
A mechanochemical redox reaction between KMnO4 and CoCl2 was developed to obtain a CoxMn1-xOy catalyst with a specific surface area of 479 m^2 g^-1,which was higher than that obtained using a co-precipitation(CP)metho... A mechanochemical redox reaction between KMnO4 and CoCl2 was developed to obtain a CoxMn1-xOy catalyst with a specific surface area of 479 m^2 g^-1,which was higher than that obtained using a co-precipitation(CP)method(34 m2 g^-1),sol-gel(SG)method(72 m^2 g^-1),or solution redox process(131 m^2 g^-1).During catalytic combustion,this CoxMn1-xOy catalyst exhibited better activity(T100 for propylene=~200℃)than the control catalysts obtained using the SG(325℃)or CP(450℃)methods.The mechanical action,mainly in the form of kinetic energy and frictional heating,may generate a high degree of interstitial porosity,while the redox reaction could contribute to good dispersion of cobalt and manganese species.Moreover,the as-prepared CoxMn1-xOy catalyst worked well in the presence of water vapor(H2O 4.2%,>60 h)or SO2(100 ppm)and at high temperature(400℃,>60 h).The structure MnO2·(CoOOH)2.93 was suggested for the current CoxMn1-xOy catalyst.This catalyst could be extended to the total oxidation of other typical hydrocarbons(T90=150°C for ethanol,T90=225°C for acetone,T90=250℃for toluene,T90=120℃for CO,and T90=540℃for CH4).Scale-up of the synthesis of CoxMn1-xOy catalyst(1 kg)can be achieved via ball milling,which may provide a potential strategy for real world catalysis. 展开更多
关键词 Mechanochemical synthesis Solid-state synthesis Porous metal oxide CoxMn1-xOy catalyst Hydrocarbon combustion
在线阅读 下载PDF
Activation of Transition Metal(Fe,Co and Ni)-Oxide Nanoclusters by Nitrogen Defects in Carbon Nanotube for Selective CO_(2) Reduction Reaction 被引量:1
2
作者 Yi Cheng Jinfan Chen +7 位作者 Chujie yang Huiping Wang Bernt Johannessen Lars Thomsen Martin Saunders Jianping Xiao shize yang San Ping Jiang 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第1期253-263,共11页
The electrochemical carbon dioxide reduction reaction(CO_(2)RR),which can produce value-added chemical feedstocks,is a proton-coupled-electron process with sluggish kinetics.Thus,highly efficient,cheap catalysts are u... The electrochemical carbon dioxide reduction reaction(CO_(2)RR),which can produce value-added chemical feedstocks,is a proton-coupled-electron process with sluggish kinetics.Thus,highly efficient,cheap catalysts are urgently required.Transition metal oxides such as CoO_(x),FeO_(x),and NiO_(x)are low-cost,low toxicity,and abundant materials for a wide range of electrochemical reactions,but are almost inert for CO_(2)RR.Here,we report for the first time that nitrogen doped carbon nanotubes(N-CNT)have a surprising activation effect on the activity and selectivity of transition metal-oxide(MO_(x)where M=Fe,Ni,and Co)nanoclusters for CO_(2)RR.MO_(x)supported on N-CNT,MO_(x)/N-CNT,achieves a CO yield of 2.6–2.8 mmol cm−2 min−1 at an overpotential of−0.55 V,which is two orders of magnitude higher than MO_(x)supported on acid treated CNTs(MO_(x)/O-CNT)and four times higher than pristine N-CNT.The faraday efficiency for electrochemical CO_(2)-to-CO conversion is as high as 90.3%at overpotential of 0.44 V.Both in-situ XAS measurements and DFT calculations disclose that MO_(x)nanoclusters can be hydrated in CO_(2)saturated KHCO_(3),and the N defects of N-CNT effectively stabilize these metal hydroxyl species under carbon dioxide reduction reaction conditions,which can split the water molecules and provide local protons to inhibit the poisoning of active sites under carbon dioxide reduction reaction conditions. 展开更多
关键词 activation effect electrochemical CO_(2)reduction reaction N defect proton-coupled electron transfer process transition metal oxide nanocluster
在线阅读 下载PDF
Switching CO_(2) Electroreduction Selectivity Between C_(1) and C_(2) Hydrocarbons on Cu Gas-Diffusion Electrodes 被引量:1
3
作者 Jianfang Zhang Zhengyuan Li +6 位作者 Rui Cai Tianyu Zhang shize yang Lu Ma Yan Wang Yucheng Wu Jingjie Wu 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第2期17-25,共9页
Regulating the selectivity toward a target hydrocarbon product is still the focus of CO_(2)electroreduction.Here,we discover that the original surface Cu species in Cu gas-diffusion electrodes plays a more important r... Regulating the selectivity toward a target hydrocarbon product is still the focus of CO_(2)electroreduction.Here,we discover that the original surface Cu species in Cu gas-diffusion electrodes plays a more important role than the surface roughness,local pH,and facet in governing the selectivity toward C_(1)or C_(2)hydrocarbons.The selectivity toward C_(2)H_(4) progressively increases,while CH_(4) decreases steadily upon lowering the Cu oxidation species fraction.At a relatively low electrodeposition voltage of 1.5 V,the Cu gas-diffusion electrode with the highest Cu^(δ+)/Cu^(0)ratio favors the pathways of∗CO hydrogenation to form CH_(4) with maximum Faradaic efficiency of 65.4%and partial current density of 228 mA cm^(−2)at−0.83 V vs RHE.At 2.0 V,the Cu gas-diffusion electrode with the lowest Cu^(δ+)/Cu^(0)ratio prefers C-C coupling to form C_(2)+products with Faradaic efficiency topping 80.1%at−0.75 V vs RHE,where the Faradaic efficiency of C_(2)H_(4) accounts for 46.4%and the partial current density of C_(2)H_(4) achieves 279 mA cm^(−2).This work demonstrates that the selectivity from CH_(4) to C_(2)H_(4) is switchable by tuning surface Cu species composition of Cu gas-diffusion electrodes. 展开更多
关键词 C_(2)H_(4) CH_(4) CO_(2)electroreduction ELECTRODEPOSITION switchable selectivity
在线阅读 下载PDF
Application of DSAPSO Algorithm in Distribution Network Reconfiguration with Distributed Generation 被引量:1
4
作者 Caixia Tao shize yang Taiguo Li 《Energy Engineering》 EI 2024年第1期187-201,共15页
With the current integration of distributed energy resources into the grid,the structure of distribution networks is becoming more complex.This complexity significantly expands the solution space in the optimization p... With the current integration of distributed energy resources into the grid,the structure of distribution networks is becoming more complex.This complexity significantly expands the solution space in the optimization process for network reconstruction using intelligent algorithms.Consequently,traditional intelligent algorithms frequently encounter insufficient search accuracy and become trapped in local optima.To tackle this issue,a more advanced particle swarm optimization algorithm is proposed.To address the varying emphases at different stages of the optimization process,a dynamic strategy is implemented to regulate the social and self-learning factors.The Metropolis criterion is introduced into the simulated annealing algorithm to occasionally accept suboptimal solutions,thereby mitigating premature convergence in the population optimization process.The inertia weight is adjusted using the logistic mapping technique to maintain a balance between the algorithm’s global and local search abilities.The incorporation of the Pareto principle involves the consideration of network losses and voltage deviations as objective functions.A fuzzy membership function is employed for selecting the results.Simulation analysis is carried out on the restructuring of the distribution network,using the IEEE-33 node system and the IEEE-69 node system as examples,in conjunction with the integration of distributed energy resources.The findings demonstrate that,in comparison to other intelligent optimization algorithms,the proposed enhanced algorithm demonstrates a shorter convergence time and effectively reduces active power losses within the network.Furthermore,it enhances the amplitude of node voltages,thereby improving the stability of distribution network operations and power supply quality.Additionally,the algorithm exhibits a high level of generality and applicability. 展开更多
关键词 Reconfiguration of distribution network distributed generation particle swarm optimization algorithm simulated annealing algorithm active network loss
在线阅读 下载PDF
Optically manipulated nanomechanics of semiconductor nanowires
5
作者 Chenzhi Song shize yang +6 位作者 Xiaomin Li Xiao Li Ji Feng Anlian Pan Wenlong Wang Zhi Xu Xuedong Bai 《Chinese Physics B》 SCIE EI CAS CSCD 2019年第5期117-121,共5页
Opto–electromechanical coupling at the nanoscale is an important topic in new scientific studies and technical applications. In this work, the optically manipulated electromechanical behaviors of individual cadmium s... Opto–electromechanical coupling at the nanoscale is an important topic in new scientific studies and technical applications. In this work, the optically manipulated electromechanical behaviors of individual cadmium sulfide(CdS) nanowires are investigated by a customer-built optical holder inside transmission electron microscope, wherein in situ electromechanical resonance took place in conjunction with photo excitation. It is found that the natural resonance frequency of the nanowire under illumination becomes considerably lower than that under darkness. This redshift effect is closely related to the wavelength of the applied light and the diameter of the nanowires. Density functional theory(DFT) calculation shows that the photoexcitation leads to the softening of CdS nanowires and thus the redshift of natural frequency, which is in agreement with the experimental results. 展开更多
关键词 opto–electromechanical coupling nano-electromechanical systems (NEMS) IN-SITU transmission electron MICROSCOPY (TEM) SEMICONDUCTOR NANOWIRES
原文传递
A trace of Pt can significantly boost RuO_(2) for acidic water splitting
6
作者 Qing Yao Jiabo Le +3 位作者 shize yang Jun Cheng Qi Shao Xiaoqing Huang 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2022年第6期1493-1501,共9页
The development of highly potential electrocatalysts for acidic water electrolysis is particularly desirable for many energy‐related processes.Herein,we demonstrated a versatile strategy to activate and stabilize RuO... The development of highly potential electrocatalysts for acidic water electrolysis is particularly desirable for many energy‐related processes.Herein,we demonstrated a versatile strategy to activate and stabilize RuO_(2)‐based electrocatalyst for acidic water splitting by a trace of Pt,where Pt plays an essential role in promoting oxygen evolution reaction(OER),and can simultaneously act as the active site for hydrogen evolution reaction(HER).Compared with pure Ru oxide nanosheet assemblies(Ru ONAs),the“5%Pt‐containing”Ru ONAs(5%Pt‐Ru ONAs)achieve much enhanced OER activity in 0.5 and 0.05 mol/L H_(2)SO_(4),with much lower overpotentials of 227 and 234 mV at 10 mA cm^(‒2),respectively.Experimental and theoretical analyses reveal that the atomically dispersed Pt incorporating into RuO_(2)lattice is conducive to increasing the concentration of O vacancies,which effectively enhances the interaction with reaction intermediate and thus lowers the energy barrier for the formation of OOH*.Moreover,benefited from the presence of Pt,the formation of RuO_(2)is more achievable when proper annealing is applied.In addition to OER,due to the presence of active Pt,the HER performance of 5%Pt‐Ru ONAs can also be ensured,thereby realizing efficient acidic overall water splitting.Finally,the excellent activity can also be achieved without sacrificing stability.This work highlights an attractive strategy for designing active and stable RuO_(2)‐based electrocatalysts for acidic overall water splitting. 展开更多
关键词 RUTHENIUM PLATINUM Oxygen vacancy ACIDIC Water splitting
在线阅读 下载PDF
Ultrasound-driven fabrication of high-entropy alloy nanocatalysts promoted by alcoholic ionic liquids 被引量:4
7
作者 Francis Okejiri Zhenzhen yang +4 位作者 Hao Chen Chi-Linh Do-Thanh Tao Wang shize yang Sheng Dai 《Nano Research》 SCIE EI CSCD 2022年第6期4792-4798,共7页
High-entropy alloy nanoparticles(HEA-NPs)are highly underutilized in heterogeneous catalysis due to the absence of a reliable,sustainable,and facile synthetic method.Herein,we report a facile synthesis of HEA nanocata... High-entropy alloy nanoparticles(HEA-NPs)are highly underutilized in heterogeneous catalysis due to the absence of a reliable,sustainable,and facile synthetic method.Herein,we report a facile synthesis of HEA nanocatalysts realized via an ultrasounddriven wet chemistry method promoted by alcoholic ionic liquids(AILs).Owing to the intrinsic reducing ability of the hydroxyl group,AILs were synthesized and utilized as environmentally friendly alternatives to conventional reducing agents and volatile organic solvents in the synthetic process.Under high-intensity ultrasound irradiation,Au^(3+),Pd^(2+),Pt^(2+),Rh^(3+),and Ru^(3+)ions were coreduced and transformed into single-phase HEA(AuPdPtRhRu)nanocrystals without calcination.Characterization results reveal that the as-synthesized nanocrystals are composed of elements of Au,Pd,Pt,Rh,and Ru as expected.Compared to the monometallic counterparts such as Pd-NPs,the carbon-supported HEA nanocatalysts show superior catalytic performance for selective hydrogenation of phenol to cyclohexanone in terms of yield and selectivity.Our synthetic strategy provides an improved and facile methodology for the sustainable synthesis of multicomponent alloys for catalysis and other applications. 展开更多
关键词 high-entropy alloy alcoholic ionic liquid SUSTAINABILITY ultrasonication nanoparticles HYDROGENATION
原文传递
Thermodynamics of order and randomness in dopant distributions inferred from atomically resolved imaging
8
作者 Lukas Vlcek shize yang +6 位作者 Yongji Gong Pulickel Ajayan Wu Zhou Matthew FChisholm Maxim Ziatdinov Rama K.Vasudevan Sergei V.Kalinin 《npj Computational Materials》 SCIE EI CSCD 2021年第1期397-405,共9页
Exploration of structure-property relationships as a function of dopant concentration is commonly based on mean field theories for solid solutions.However,such theories that work well for semiconductors tend to fail i... Exploration of structure-property relationships as a function of dopant concentration is commonly based on mean field theories for solid solutions.However,such theories that work well for semiconductors tend to fail in materials with strong correlations,either in electronic behavior or chemical segregation.In these cases,the details of atomic arrangements are generally not explored and analyzed.The knowledge of the generative physics and chemistry of the material can obviate this problem,since defect configuration libraries as stochastic representation of atomic level structures can be generated,or parameters of mesoscopic thermodynamic models can be derived.To obtain such information for improved predictions,we use data from atomically resolved microscopic images that visualize complex structural correlations within the system and translate them into statistical mechanical models of structure formation.Given the significant uncertainties about the microscopic aspects of the material’s processing history along with the limited number of available images,we combine model optimization techniques with the principles of statistical hypothesis testing.We demonstrate the approach on data from a series of atomically-resolved scanning transmission electron microscopy images of Mo_(x)Re_(1-x)S_(2) at varying ratios of Mo/Re stoichiometries,for which we propose an effective interaction model that is then used to generate atomic configurations and make testable predictions at a range of concentrations and formation temperatures. 展开更多
关键词 ATOMIC RESOLVED DOPANT
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部