In a Dirac semimetal, the massless Dirac fermion has zero chirality, leading to surface states connected adiabatically to a topologically trivial surface state as well as vanishing anomalous Hall effect. Recently, it ...In a Dirac semimetal, the massless Dirac fermion has zero chirality, leading to surface states connected adiabatically to a topologically trivial surface state as well as vanishing anomalous Hall effect. Recently, it is predicted that in the nonrelativistic limit of certain collinear antiferromagnets, there exists a type of chiral“Dirac-like” fermion, whose dispersion manifests four-fold degenerate crossing points formed by spin-degenerate linear bands, with topologically protected Fermi arcs. Such an unconventional chiral fermion, protected by a hidden SU(2) symmetry in the hierarchy of an enhanced crystallographic group, namely spin space group, is not experimentally verified yet. Here, by angle-resolved photoemission spectroscopy measurements, we reveal the surface origin of the electron pocket at the Fermi surface in collinear antiferromagnet CoNb3S6. Combining with neutron diffraction and first-principles calculations, we suggest a multidomain collinear antiferromagnetic configuration, rendering the the existence of the Fermi-arc surface states induced by chiral Dirac-like fermions.Our work provides spectral evidence of the chiral Dirac-like fermion caused by particular spin symmetry in CoNb_(3)S_(6), paving an avenue for exploring new emergent phenomena in antiferromagnets with unconventional quasiparticle excitations.展开更多
Lentil(Lens culinaris Medik.), a diploid(2n = 14) with a genome size greater than 4000 Mbp, is an important cool season food legume grown worldwide. The availability of genomic resources is limited in this crop specie...Lentil(Lens culinaris Medik.), a diploid(2n = 14) with a genome size greater than 4000 Mbp, is an important cool season food legume grown worldwide. The availability of genomic resources is limited in this crop species. The objective of this study was to develop polymorphic markers in lentil using publicly available curated expressed sequence tag information(ESTs). In this study, 9513 ESTs were downloaded from the National Center for Biotechnology Information(NCBI) database to develop unigene-based simple sequence repeat(SSR) markers. The ESTs were assembled into 4053 unigenes and then analyzed to identify 374 SSRs using the MISA microsatellite identification tool. Among the 374 SSRs, 26 compound SSRs were observed.Primer pairs for these SSRs were designed using Primer3 version 1.14. To classify the functional annotation of ESTs and EST–SSRs, BLASTx searches(using E-value 1 × 10-5) against the public UniP rot(http://www.uniprot.org/) and NCBI(http://www.ncbi.nlh.nih.gov/) databases were performed. Further functional annotation was performed using PLAZA(version3.0) comparative genomics and GO annotation was summarized using the Plant GO slim category. Among the synthesized 312 primers, 219 successfully amplified Lens DNA. A diverse panel of 24 Lens genotypes was used to identify polymorphic markers. A polymorphic set of 57 markers successfully discriminated the test genotypes. This set of polymorphic markers with functional annotation data could be used as molecular tools in lentil breeding.展开更多
Grass pea(Lathyrus sativus L.) is a crop that is considered one of the more resilient to climate change. With protein-rich seeds and leaves, it has strong potential as human food as well as animal feed and fodder. How...Grass pea(Lathyrus sativus L.) is a crop that is considered one of the more resilient to climate change. With protein-rich seeds and leaves, it has strong potential as human food as well as animal feed and fodder. However, genetic improvement in this crop remains stagnant owing to the poor characterization of its genetic resources. In this study, we characterized 118 accessions of grass pea with 18 EST-SSR markers. A total of 118 accessions, 101 of L. sativus(100 cultivated accessions from Bangladesh and one wild accession) and 17 wild accessions of other Lathyrus species, were used. A total of 67 alleles were detected, with an average of 3.72 alleles per locus and average polymorphism information content of 0.52. A dissimilarity matrix was formed and hierarchical cluster analysis performed using the UPGMA method grouped genotypes into four main clusters. Cluster analysis based on the genetic dissimilarity revealed a clear grouping of the 100 cultivated and 18 wild accessions into four main groups. Group I consisted of 20 accessions with high β-N-oxalyl-L-α,β-diaminopropionic acid(β-ODAP) concentration. Of these 20 accessions, 17 were wild accessions. Only one wild accession(L. cicera) was clustered in group II, which contained 35 accessions. Most of the group II accessions contained low β-ODAP. Group III was represented by 34 accessions, many of them with high β-ODAP. Group IV consisted of 29 accessions, a few of which had very high β-ODAP concentrations. Analysis of molecular variance of the microsatellite data showed significantly higher values of molecular variance between(83%) than within(17%) populations. These characterized accessions will be useful in grass pea breeding programs.展开更多
Random amplified polymorphic DNA (RAPD) markers were used to study the DNA polymorphism in Indian mungbean cultivars. A total of 60 random primers were used in the study and 33 of them generated reproducible RAPD patt...Random amplified polymorphic DNA (RAPD) markers were used to study the DNA polymorphism in Indian mungbean cultivars. A total of 60 random primers were used in the study and 33 of them generated reproducible RAPD patterns. Amplification of genomic DNA of most popular 24 Indian mungbean cultivars with these RAPD primers yielded 249 fragments that could be scored, of which 224 were polymorphic, with an average of 7.0 polymorphic fragments per primer. Number of amplified fragments with random primers ranged from 2 (OPI 9) to 17 (OPD 7). Percentage polymorphism ranged from 33% (OPX 5) to a maximum of 100% (OPX 4, OPX 6, OPX 13, OPX 15, OPX 19, OPD 5, OPD 7, OPD 20, OPI 4, OPI 6, OPI 13, OPI 14, OPI 18 and OPF 1), with an average of 90%. The Jaccard’s similarity indices based on RAPD profiles were subjected to UPGMA cluster analysis. And genotypes grouped in two major groups. Sixteen out of 24 released cultivars grouped to cluster I. This indicated the narrow genetic base in the Indian mungbean cultivars used in the study. The details of diversity analysis and possible reasons for narrow genetic base in mungbean cultivars are discussed in the present study.展开更多
The topological insulators Bi_(2-x)Fe_(x)Se_(3-x)S_(x) have been investigated by the dc-magnetization,magnetotransport and angle resolved photoemission spectroscopy(ARPES)techniques.With doping of Fe and S,a negative ...The topological insulators Bi_(2-x)Fe_(x)Se_(3-x)S_(x) have been investigated by the dc-magnetization,magnetotransport and angle resolved photoemission spectroscopy(ARPES)techniques.With doping of Fe and S,a negative giant magneto-resistance(MR)is observed for parallel electric and magnetic fields(H||E).The MR behavior at lower magnetic field can be explained with the semi-classical theory whereas the MR behavior at higher field has been attributed to the axial anomaly.Interestingly,the system reached to the quantum limit at low magnetic field(~4.5T).The magnetic ordering can be explained with the presence of both the RKKY(surface)and van-Vleck(bulk)interaction.The ARPES study reveals that a surface gap is suppressed when the magnetic ordering changes from ferromagnetic to anti-ferromagnetic ordering.The ARPES study and the appearance of quantum oscillations(SdH)in the resistivity pattern reveal that the topological surface property is preserved with the co-doping of Fe and S.展开更多
基金supported by the National Key R&D Program of China (Grant Nos. 2020YFA0308900 and 2022YFA1403700)the National Natural Science Foundation of China (Grant Nos. 12074163, 12134020, 11974157, 12104255, 12004159, and 12374146)+8 种基金Guangdong Provincial Key Laboratory for Computational Science and Material Design (Grant No. 2019B030301001)the Science, Technology and Innovation Commission of Shenzhen Municipality (Grant Nos. ZDSYS20190902092905285 and KQTD20190929173815000)Guangdong Basic and Applied Basic Research Foundation (Grant Nos. 2022B1515020046, 2021B1515130007, 2022A1515011915, 2019A1515110712, and 2022B1515130005)Shenzhen Science and Technology Program (Grant Nos. RCJC20221008092722009 and RCBS20210706092218039)the Guangdong Innovative and Entrepreneurial Research Team Program (Grant No. 2019ZT08C044)the beam time awarded by Australia’s Nuclear Science and Technology Organisation (ANSTO) (Grant No. P8130)the Materials and Life Science Experimental Facility of the Japan Proton Accelerator Research Complex (J-PARC) was performed under a user program (Proposal No. 2019B0140)performed at the Hiroshima Synchrotron Radiation Center (HiSOR) of Japan (Grant Nos. 22BG023 and 22BG029)Shanghai Synchrotron Radiation Facility (SSRF) BL03U (Grant No. 2022-SSRF-PT-020848)。
文摘In a Dirac semimetal, the massless Dirac fermion has zero chirality, leading to surface states connected adiabatically to a topologically trivial surface state as well as vanishing anomalous Hall effect. Recently, it is predicted that in the nonrelativistic limit of certain collinear antiferromagnets, there exists a type of chiral“Dirac-like” fermion, whose dispersion manifests four-fold degenerate crossing points formed by spin-degenerate linear bands, with topologically protected Fermi arcs. Such an unconventional chiral fermion, protected by a hidden SU(2) symmetry in the hierarchy of an enhanced crystallographic group, namely spin space group, is not experimentally verified yet. Here, by angle-resolved photoemission spectroscopy measurements, we reveal the surface origin of the electron pocket at the Fermi surface in collinear antiferromagnet CoNb3S6. Combining with neutron diffraction and first-principles calculations, we suggest a multidomain collinear antiferromagnetic configuration, rendering the the existence of the Fermi-arc surface states induced by chiral Dirac-like fermions.Our work provides spectral evidence of the chiral Dirac-like fermion caused by particular spin symmetry in CoNb_(3)S_(6), paving an avenue for exploring new emergent phenomena in antiferromagnets with unconventional quasiparticle excitations.
基金Financial assistance from ICARDA, Morocco, in the form of a brief projectgrant support from the Northern Pulse Growers Association and the USA Dry Pea and Lentil Council are gratefully acknowledged
文摘Lentil(Lens culinaris Medik.), a diploid(2n = 14) with a genome size greater than 4000 Mbp, is an important cool season food legume grown worldwide. The availability of genomic resources is limited in this crop species. The objective of this study was to develop polymorphic markers in lentil using publicly available curated expressed sequence tag information(ESTs). In this study, 9513 ESTs were downloaded from the National Center for Biotechnology Information(NCBI) database to develop unigene-based simple sequence repeat(SSR) markers. The ESTs were assembled into 4053 unigenes and then analyzed to identify 374 SSRs using the MISA microsatellite identification tool. Among the 374 SSRs, 26 compound SSRs were observed.Primer pairs for these SSRs were designed using Primer3 version 1.14. To classify the functional annotation of ESTs and EST–SSRs, BLASTx searches(using E-value 1 × 10-5) against the public UniP rot(http://www.uniprot.org/) and NCBI(http://www.ncbi.nlh.nih.gov/) databases were performed. Further functional annotation was performed using PLAZA(version3.0) comparative genomics and GO annotation was summarized using the Plant GO slim category. Among the synthesized 312 primers, 219 successfully amplified Lens DNA. A diverse panel of 24 Lens genotypes was used to identify polymorphic markers. A polymorphic set of 57 markers successfully discriminated the test genotypes. This set of polymorphic markers with functional annotation data could be used as molecular tools in lentil breeding.
基金supported partially by Bioversity VavilovFrankel Fellowship to Priyanka Gupta(Grant no.CONT/12/217/RF)supported by Grains Research and Development Corporation(GRDC),Australia
文摘Grass pea(Lathyrus sativus L.) is a crop that is considered one of the more resilient to climate change. With protein-rich seeds and leaves, it has strong potential as human food as well as animal feed and fodder. However, genetic improvement in this crop remains stagnant owing to the poor characterization of its genetic resources. In this study, we characterized 118 accessions of grass pea with 18 EST-SSR markers. A total of 118 accessions, 101 of L. sativus(100 cultivated accessions from Bangladesh and one wild accession) and 17 wild accessions of other Lathyrus species, were used. A total of 67 alleles were detected, with an average of 3.72 alleles per locus and average polymorphism information content of 0.52. A dissimilarity matrix was formed and hierarchical cluster analysis performed using the UPGMA method grouped genotypes into four main clusters. Cluster analysis based on the genetic dissimilarity revealed a clear grouping of the 100 cultivated and 18 wild accessions into four main groups. Group I consisted of 20 accessions with high β-N-oxalyl-L-α,β-diaminopropionic acid(β-ODAP) concentration. Of these 20 accessions, 17 were wild accessions. Only one wild accession(L. cicera) was clustered in group II, which contained 35 accessions. Most of the group II accessions contained low β-ODAP. Group III was represented by 34 accessions, many of them with high β-ODAP. Group IV consisted of 29 accessions, a few of which had very high β-ODAP concentrations. Analysis of molecular variance of the microsatellite data showed significantly higher values of molecular variance between(83%) than within(17%) populations. These characterized accessions will be useful in grass pea breeding programs.
文摘Random amplified polymorphic DNA (RAPD) markers were used to study the DNA polymorphism in Indian mungbean cultivars. A total of 60 random primers were used in the study and 33 of them generated reproducible RAPD patterns. Amplification of genomic DNA of most popular 24 Indian mungbean cultivars with these RAPD primers yielded 249 fragments that could be scored, of which 224 were polymorphic, with an average of 7.0 polymorphic fragments per primer. Number of amplified fragments with random primers ranged from 2 (OPI 9) to 17 (OPD 7). Percentage polymorphism ranged from 33% (OPX 5) to a maximum of 100% (OPX 4, OPX 6, OPX 13, OPX 15, OPX 19, OPD 5, OPD 7, OPD 20, OPI 4, OPI 6, OPI 13, OPI 14, OPI 18 and OPF 1), with an average of 90%. The Jaccard’s similarity indices based on RAPD profiles were subjected to UPGMA cluster analysis. And genotypes grouped in two major groups. Sixteen out of 24 released cultivars grouped to cluster I. This indicated the narrow genetic base in the Indian mungbean cultivars used in the study. The details of diversity analysis and possible reasons for narrow genetic base in mungbean cultivars are discussed in the present study.
基金Authors are grateful to CIF,IIT(BHU)for providing magnetic measurement facility.The ARPES measurements were performed with the approval of the Proposal Assessing Committee of the Hiroshima Synchrotron Radiation Center(Proposal Numbers:18AG029 and 18BG031).
文摘The topological insulators Bi_(2-x)Fe_(x)Se_(3-x)S_(x) have been investigated by the dc-magnetization,magnetotransport and angle resolved photoemission spectroscopy(ARPES)techniques.With doping of Fe and S,a negative giant magneto-resistance(MR)is observed for parallel electric and magnetic fields(H||E).The MR behavior at lower magnetic field can be explained with the semi-classical theory whereas the MR behavior at higher field has been attributed to the axial anomaly.Interestingly,the system reached to the quantum limit at low magnetic field(~4.5T).The magnetic ordering can be explained with the presence of both the RKKY(surface)and van-Vleck(bulk)interaction.The ARPES study reveals that a surface gap is suppressed when the magnetic ordering changes from ferromagnetic to anti-ferromagnetic ordering.The ARPES study and the appearance of quantum oscillations(SdH)in the resistivity pattern reveal that the topological surface property is preserved with the co-doping of Fe and S.