本文通过对亚硝酸盐降解菌Lactobacillus plantarum SD-7、抗氧化功能菌Lactobacillus plantarum FM-LP-9和抑菌功能菌Lactobacillus alimentarius FM-MM4间的生长相容性、共培养对菌株功能的影响及复合接种发酵豇豆品质和感官评定的研...本文通过对亚硝酸盐降解菌Lactobacillus plantarum SD-7、抗氧化功能菌Lactobacillus plantarum FM-LP-9和抑菌功能菌Lactobacillus alimentarius FM-MM4间的生长相容性、共培养对菌株功能的影响及复合接种发酵豇豆品质和感官评定的研究,制备浅渍豇豆的复合功能发酵剂。结果表明:复合功能发酵剂的3菌株之间具有优良的生长相容性,共培养的菌体密度提高范围为0.49~6.32倍;在3株菌的接种比例为1:1:1的共培养体系中,功能特性发挥最优;复合体系中菌株的亚硝酸盐降解率为96.15%,与Lactobacillus plantarum SD-7单独培养相比,提高8.59%,DPPH自由基清除率为51.23%,ABTS;自由基清除率为64.52%,还原力为175.23μmol·L^(-1)(L-半胱氨酸),与Lactobacillus plantarum FM-LP-9单独培养相比,分别提高了15.82%、 14.58%和20.66%;抑菌能力与Lactobacillus alimentarius FM-MM4单独培养相比也有显著提高(P<0.05)。与自然发酵CK相比,接种发酵有利于提高浅渍发酵豇豆的品质。展开更多
1病例资料患者女,36岁,身高162 cm,体重50 kg,因“阴道不规则出血半年”于2017年3月2日收入海军军医大学(第二军医大学)第一附属医院治疗。患者既往体健,术前常规检查和实验室检验结果未见异常,体格检查无异常。美国麻醉医师学会(Americ...1病例资料患者女,36岁,身高162 cm,体重50 kg,因“阴道不规则出血半年”于2017年3月2日收入海军军医大学(第二军医大学)第一附属医院治疗。患者既往体健,术前常规检查和实验室检验结果未见异常,体格检查无异常。美国麻醉医师学会(American Society of Anesthesiologists,ASA)分级Ⅰ级。展开更多
Little is known about the stable carbon isotopes of methane (CH4) emitted (δ13CH4elnitted) from permanently flooded rice fields and double rice-cropping fields. The CH4 emission and corresponding (δ13CH4emitted...Little is known about the stable carbon isotopes of methane (CH4) emitted (δ13CH4elnitted) from permanently flooded rice fields and double rice-cropping fields. The CH4 emission and corresponding (δ13CH4emitted under various field managements (mulching, water regime, tillage, and nitrogen (N) fertilization) were simultaneously measured in three typical Chinese rice fields, a permanently flooded rice field in Ziyang City, Sichuan Province, Southwest China, a double-rice cropping field in Yingtan City, Jiangxi Province, Southeast China, and a rice-wheat rotation field in Jurong City, Jiangsu Province, East China, from 2010 to 2012. Results showed different seasonal variations of δ13CH4emitted among the three fields during the rice-growing season. The values of (δ13CH4emitted were negatively correlated with corresponding CH4 emissions in seasonal variation and mean, indicating the importance of CH4 production, oxidation, and transport associated with isotopic fractionation effects to the δ13CH4emitted. Seasonal variations of δ13CH4emltted were slightly impacted by mulching cultivation, tillage, and N application, but highly controlled by drainage. Meanwhile, tillage, N application, and especially mulching cultivation had important effects on seasonal mean CH4 emissions and corresponding δ13CH4emitted with low emissions accompanied by high values of δ13CH4emitted. Seasonal mean values of (δ13CH4emitted from the three fields were similar, mostly ranging from -60‰ to -50‰ which are well in agreement with previously published data. These demonstrated that seasonal variations of (δ13CH4emitted mainly depended on the changes in CH4 emission from rice fields and further indicated the important effects of methanogenic pathways, CH4 oxidation, and CH4 transport associated with isotope fractionation effects influenced by field managements on δ13CH4emitted.展开更多
文摘本文通过对亚硝酸盐降解菌Lactobacillus plantarum SD-7、抗氧化功能菌Lactobacillus plantarum FM-LP-9和抑菌功能菌Lactobacillus alimentarius FM-MM4间的生长相容性、共培养对菌株功能的影响及复合接种发酵豇豆品质和感官评定的研究,制备浅渍豇豆的复合功能发酵剂。结果表明:复合功能发酵剂的3菌株之间具有优良的生长相容性,共培养的菌体密度提高范围为0.49~6.32倍;在3株菌的接种比例为1:1:1的共培养体系中,功能特性发挥最优;复合体系中菌株的亚硝酸盐降解率为96.15%,与Lactobacillus plantarum SD-7单独培养相比,提高8.59%,DPPH自由基清除率为51.23%,ABTS;自由基清除率为64.52%,还原力为175.23μmol·L^(-1)(L-半胱氨酸),与Lactobacillus plantarum FM-LP-9单独培养相比,分别提高了15.82%、 14.58%和20.66%;抑菌能力与Lactobacillus alimentarius FM-MM4单独培养相比也有显著提高(P<0.05)。与自然发酵CK相比,接种发酵有利于提高浅渍发酵豇豆的品质。
文摘1病例资料患者女,36岁,身高162 cm,体重50 kg,因“阴道不规则出血半年”于2017年3月2日收入海军军医大学(第二军医大学)第一附属医院治疗。患者既往体健,术前常规检查和实验室检验结果未见异常,体格检查无异常。美国麻醉医师学会(American Society of Anesthesiologists,ASA)分级Ⅰ级。
基金financially supported by the Strategic Priority Research Program of Chinese Academy of Sciences(No.XDB15020103)the National Key Technology Research and Development Program of China(No.2013BAD11B02)+2 种基金the National Natural Sciences Foundation of China(Nos.41571232 and 41271259)the State Key Laboratory of Soil and Sustainable Agriculture(No.Y412010003)the Knowledge Innovation Program of Institute of Soil Science,Chinese Academy of Sciences(No.ISSASIP1654)
文摘Little is known about the stable carbon isotopes of methane (CH4) emitted (δ13CH4elnitted) from permanently flooded rice fields and double rice-cropping fields. The CH4 emission and corresponding (δ13CH4emitted under various field managements (mulching, water regime, tillage, and nitrogen (N) fertilization) were simultaneously measured in three typical Chinese rice fields, a permanently flooded rice field in Ziyang City, Sichuan Province, Southwest China, a double-rice cropping field in Yingtan City, Jiangxi Province, Southeast China, and a rice-wheat rotation field in Jurong City, Jiangsu Province, East China, from 2010 to 2012. Results showed different seasonal variations of δ13CH4emitted among the three fields during the rice-growing season. The values of (δ13CH4emitted were negatively correlated with corresponding CH4 emissions in seasonal variation and mean, indicating the importance of CH4 production, oxidation, and transport associated with isotopic fractionation effects to the δ13CH4emitted. Seasonal variations of δ13CH4emltted were slightly impacted by mulching cultivation, tillage, and N application, but highly controlled by drainage. Meanwhile, tillage, N application, and especially mulching cultivation had important effects on seasonal mean CH4 emissions and corresponding δ13CH4emitted with low emissions accompanied by high values of δ13CH4emitted. Seasonal mean values of (δ13CH4emitted from the three fields were similar, mostly ranging from -60‰ to -50‰ which are well in agreement with previously published data. These demonstrated that seasonal variations of (δ13CH4emitted mainly depended on the changes in CH4 emission from rice fields and further indicated the important effects of methanogenic pathways, CH4 oxidation, and CH4 transport associated with isotope fractionation effects influenced by field managements on δ13CH4emitted.