期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Towards a lightweight security framework using blockchain and machine learning 被引量:1
1
作者 shereen ismail Muhammad Nouman +1 位作者 Diana W.Dawoud Hassan Reza 《Blockchain(Research and Applications)》 EI 2024年第1期107-118,共12页
Cyber-attacks pose a significant challenge to the security of Internet of Things(IoT)sensor networks,necessitating the development of robust countermeasures tailored to their unique characteristics and limitations.Var... Cyber-attacks pose a significant challenge to the security of Internet of Things(IoT)sensor networks,necessitating the development of robust countermeasures tailored to their unique characteristics and limitations.Various prevention and detection techniques have been proposed to mitigate these attacks.In this paper,we propose an integrated security framework using blockchain and Machine Learning(ML)to protect IoT sensor networks.The framework consists of two modules:a blockchain prevention module and an ML detection module.The blockchain prevention module has two lightweight mechanisms:identity management and trust management.Identity management employs a lightweight Smart Contract(SC)to manage node registration and authentication,ensuring that unauthorized entities are prohibited from engaging in any tasks,while trust management uses a lightweight SC that is responsible for maintaining trust and credibility between sensor nodes throughout the network’s lifetime and tracking historical node behaviors.Consensus and transaction validation are achieved through a Verifiable Byzantine Fault Tolerance(VBFT)mechanism to ensure network reliability and integrity.The ML detection module utilizes the Light Gradient Boosting Machine(LightGBM)algorithm to classify malicious nodes and notify the blockchain network if it must make decisions to mitigate their impacts.We investigate the performance of several off-the-shelf ML algorithms,including Logistic Regression,Complement Naive Bayes,Nearest Centroid,and Stacking,using the WSN-DS dataset.LightGBM is selected following a detailed comparative analysis conducted using accuracy,precision,recall,F1-score,processing time,training time,prediction time,computational complexity,and Matthews Correlation Coefficient(MCC)evaluation metrics. 展开更多
关键词 Blockchain Machine learning IOT SECURITY INTEGRATION Smart contracts
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部