The pursuit of compact and integrated devices has stimulated a growing demand for multifunctional sensors with rapid and accurate responses to various physical parameters,either separately or simultaneously.Fluorescen...The pursuit of compact and integrated devices has stimulated a growing demand for multifunctional sensors with rapid and accurate responses to various physical parameters,either separately or simultaneously.Fluorescent fiber sensors have the advantages of robust stability,light weight,and compact geometry,enabling real-time and noninvasive signal detection by monitoring the fluorescence parameters.Despite substantial progress in fluorescence sensors,achieving multifunctional sensing in a single optical fiber remains challenging.To solve this problem,in this study,we present a bottom-up strategy to design and fabricate thermally drawn multifunctional fiber sensors by incorporating functional nanocrystals with temperature and pressure fluorescence responses into a transparent glass matrix.To generate the desired nanocrystal-in-glass composite(NGC)fiber,the fluorescent activators,incorporated nanocrystals,glassy core materials,and cladding matrix are rationally designed.Utilizing the fluorescence intensity ratio technique,a self-calibrated fiber sensor is demonstrated,with a bi-functional response to temperature and pressure.For temperature sensing,the NGC fiber exhibits temperature-dependent near-infrared emission at temperatures up to 573 K with a maximum absolute sensitivity of 0.019 K−1.A pressure-dependent upconversion emission is also realized in the visible spectral region,with a linear slope of-0.065.The successful demonstration of multifunctional NGC fiber sensors provides an efficient pathway for new paradigms of multifunctional sensors as well as a versatile strategy for future hybrid fibers with novel combinations of magnetic,optical,and mechanical properties.展开更多
With the rapid growth of optical communications traffic,the demand for broadband optical amplifiers continues to increase.It is necessary to develop a gain medium that covers more optical communication bands.We precip...With the rapid growth of optical communications traffic,the demand for broadband optical amplifiers continues to increase.It is necessary to develop a gain medium that covers more optical communication bands.We precipitated PbS quantum dots(QDs) and Ba F_(2):Tm^(3+) nanocrystals (NCs) in the same glass to form two independent emission centers.The Ba F_(2)NCs in the glass can provide a crystal field environment with low phonon energy for rare earth (RE) ions and prevent the energy transfer between RE ions and PbS QDs.By adjusting the heat treatment schedule,the emission of the two luminescence centers from PbS QDs and Tm^(3+) ions perfectly splices and covers the ultra-broadband near-infrared emission from 1200 nm to 2000 nm with bandwidth over 430 nm.Therefore,it is expected to be a promising broadband gain medium for fiber amplifiers.展开更多
基金supported by the Key Research and Development Program of Guangzhou(202007020003)the National Natural Science Foundation of China(62122027,52002128 and 62075063)+2 种基金the fellowship of China Postdoctoral Science Foundation(2020M672621 and 2021M691054)Guangzhou Basic and Applied Basic Research Foundation(202102021109)Local Innovative and Research Teams Project of Guangdong Pearl River Talents Program(2017BT01×137)。
文摘The pursuit of compact and integrated devices has stimulated a growing demand for multifunctional sensors with rapid and accurate responses to various physical parameters,either separately or simultaneously.Fluorescent fiber sensors have the advantages of robust stability,light weight,and compact geometry,enabling real-time and noninvasive signal detection by monitoring the fluorescence parameters.Despite substantial progress in fluorescence sensors,achieving multifunctional sensing in a single optical fiber remains challenging.To solve this problem,in this study,we present a bottom-up strategy to design and fabricate thermally drawn multifunctional fiber sensors by incorporating functional nanocrystals with temperature and pressure fluorescence responses into a transparent glass matrix.To generate the desired nanocrystal-in-glass composite(NGC)fiber,the fluorescent activators,incorporated nanocrystals,glassy core materials,and cladding matrix are rationally designed.Utilizing the fluorescence intensity ratio technique,a self-calibrated fiber sensor is demonstrated,with a bi-functional response to temperature and pressure.For temperature sensing,the NGC fiber exhibits temperature-dependent near-infrared emission at temperatures up to 573 K with a maximum absolute sensitivity of 0.019 K−1.A pressure-dependent upconversion emission is also realized in the visible spectral region,with a linear slope of-0.065.The successful demonstration of multifunctional NGC fiber sensors provides an efficient pathway for new paradigms of multifunctional sensors as well as a versatile strategy for future hybrid fibers with novel combinations of magnetic,optical,and mechanical properties.
基金This work was financially supported by the Key R&D Program of Guangzhou(No.202007020003)National Natural Science Foundation of China(Nos.62122027,52002128,62075063,51772101,and 51872095)+2 种基金China Postdoctoral Science Foundation(Nos.2020M672621 and 2021M691054)Local Innovative and Research Teams Project of Guangdong Pearl River Talents Program(No.2017BT01X137)State Key Laboratory of Advanced Technology for Materials Synthesis and Processing,Wuhan University of Technology(No.2020KF-19)。
文摘With the rapid growth of optical communications traffic,the demand for broadband optical amplifiers continues to increase.It is necessary to develop a gain medium that covers more optical communication bands.We precipitated PbS quantum dots(QDs) and Ba F_(2):Tm^(3+) nanocrystals (NCs) in the same glass to form two independent emission centers.The Ba F_(2)NCs in the glass can provide a crystal field environment with low phonon energy for rare earth (RE) ions and prevent the energy transfer between RE ions and PbS QDs.By adjusting the heat treatment schedule,the emission of the two luminescence centers from PbS QDs and Tm^(3+) ions perfectly splices and covers the ultra-broadband near-infrared emission from 1200 nm to 2000 nm with bandwidth over 430 nm.Therefore,it is expected to be a promising broadband gain medium for fiber amplifiers.