期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Recent progress in nanotechnology for cancer therapy 被引量:6
1
作者 Mu-Fei Tang Lei Lei +1 位作者 sheng-rong guo Wen-Lin Huang 《Chinese Journal of Cancer》 SCIE CAS CSCD 北大核心 2010年第9期775-780,共6页
The application of nanotechnology significantly benefits clinical practice in cancer diagnosis, treatment, and management.Especially, nanotechnology offers a promise for the targeted delivery of drugs, genes, and prot... The application of nanotechnology significantly benefits clinical practice in cancer diagnosis, treatment, and management.Especially, nanotechnology offers a promise for the targeted delivery of drugs, genes, and proteins to tumor tissues and therefore alleviating the toxicity of anticancer agents in healthy tissues.This article reviews current nanotechnology platforms for anticancer drug delivery, including polymeric nanoparticles, liposomes, dendrimers, nanoshells, carbon nanotubes, superparamagnetic nanoparticles, and nucleic acid-based nanoparticles [DNA, RNA interference (RNAi), and antisense oligonucleotide (ASO)] as well as nanotechnologies for combination therapeutic strategies, for example, nanotechnologies combined with multidrug-resistance modulator, ultrasound, hyperthermia, or photodynamic therapy.This review raises awareness of the advantages and challenges for the application of these therapeutic nanotechnologies, in light of some recent advances in nanotechnologic drug delivery and cancer therapy. 展开更多
关键词 纳米技术 癌症治疗 聚合物纳米粒子 磁性纳米粒子 反义寡核苷酸 肿瘤组织 药物毒性 抗癌药物
在线阅读 下载PDF
Three-dimensional flow field mathematical model inside the pilot stage of the deflector jet servo valve 被引量:1
2
作者 Shuang-lu LI Yao-bao YIN +1 位作者 Jiang-yang YUAN sheng-rong guo 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2022年第10期795-806,共12页
A new flow field mathematical model is proposed to describe accurately the flow field structure and calculate the static characteristics of the pilot stage in a deflector jet servo valve(DJSV). The flow field is divid... A new flow field mathematical model is proposed to describe accurately the flow field structure and calculate the static characteristics of the pilot stage in a deflector jet servo valve(DJSV). The flow field is divided into five regions, a 3D turbulent jet is adopted to describe the free jet region, and a velocity distribution expression of the jet is proposed. The jet entrainment model is put forward in the pressure recovery region to describe the coupling relationship between the pressure in the receiving chamber and the jet flow. The static characteristics, including pressure-flow characteristics, pressure characteristics,and flow characteristics of the pilot stage are obtained. The flow field structure and the static characteristics are verified by finite element analysis(FEA) and experiment, respectively, and the mathematical model results are in good agreement with the experimental and simulation results. 展开更多
关键词 Deflector jet servo valve(DJSV) Pilot stage Three-dimensional jets Jets entrainment Static characteristics Mathematical model
原文传递
Defect-driven innovations in photocatalysts:Pathways to enhanced photocatalytic applications
3
作者 Hamid Ali Zeeshan Ajmal +9 位作者 Abdullah Yahya Abdullah Alzahrani Mohammed H.Al Mughram Ahmed M.Abu-Dief Rawan Al-Faze Hassan M.A.Hassan Saedah R.Al-Mhyawi Yas Al-Hadeethi Yasin Orooji sheng-rong guo Asif Hayat 《InfoMat》 2025年第9期7-77,共71页
Defect engineering in photocatalytic materials has garnered significant interest due to the considerable impact of defects on light absorption,charge separation,and surface reaction dynamics.However,a limited understa... Defect engineering in photocatalytic materials has garnered significant interest due to the considerable impact of defects on light absorption,charge separation,and surface reaction dynamics.However,a limited understanding of how these defects influence photocatalytic properties remains a persistent challenge.This review comprehensively analyzes the vital role of defect engineering for enhancing the photocatalytic performance,highlighting its significant influence on material properties and efficiency.It systematically classifies defect types,including vacancy defects(oxygen and metal vacancies),doping defects(anion and cation),interstitial defects,surface defects(step edges,terraces,kinks,and disordered layers),antisite defects,and interfacial defects in the core–shell structures and heterostructure borders.The impact of complex defect groups and manifold defects on improved photocatalytic performance is also examined.The review emphasizes the principal benefits of defect engineering,including the enhancement of light adsorption,reduction of band gaps,improved charge separation and movements,and suppression of charge recombination.These enhancements lead to a boost in catalytic active sites,optimization of electronic structures,tailored band alignments,and the development of mid-gap states,leading to improved structural stability,photocorrosion resistance,and better reaction selectivity.Furthermore,the most recent improvements,such as oxygen vacancies,nitrogen and sulfur doping,surface defect engineering,and innovations in heterostructures,defect-rich metal–organic frameworks,and defective nanostructures,are examined comprehensively.This study offers essential insights into modern techniques and approaches in defect engineering,highlighting its significance in addressing challenges in photocatalytic materials and promoting the advancement of effective and adaptable platforms for renewable energy and environmental uses. 展开更多
关键词 charge separation defect engineering photocatalytic applications surface defects sustainable energy vacancy defects
原文传递
Morphology-driven innovations in quantum dots: Unlocking enhanced photocatalytic potential
4
作者 Hamid Ali Yasin Orooji +6 位作者 Basem Al Alwan Atef EL Jery Ahmed MAbu-Dief Rawan AL-Faze sheng-rong guo Bo Wu Asif Hayat 《Journal of Energy Chemistry》 2025年第12期790-846,I0018,共58页
Quantum dots(QDs) are semiconductor nanostructures that display unique optical and electronic properties due to quantum confinement effects at the nanoscale.Their efficiency in photocatalysis,particularly for energy-r... Quantum dots(QDs) are semiconductor nanostructures that display unique optical and electronic properties due to quantum confinement effects at the nanoscale.Their efficiency in photocatalysis,particularly for energy-related applications,is significantly influenced by their morphology,which can be precisely controlled using different synthesis parameters and techniques.For the first time,this review focuses on the important parameters that influence QDs morphology,such as precursor selection,reaction temperature and time,solvent effects,capping agents or ligands,doping and composition,postsynthesis treatments,and surfactants and stabilizers.It also discusses different synthesis approaches such as colloidal,solvothermal,hydrothermal,microwave-assisted,chemical vapor deposition(CVD),electrochemical,and biomimetic(green) methods,all offering different strategies for controlling QDs morphology.The review explores a range of QDs morphologies,including nanoflowers,nanowires,cubic,nanoribbons,nanofibers,porous,alloyed,nanotubes,heterostructures,core-shell,nanorods,nanosheets,hollow,nanospheres,and spherical particles,which directly influence band structures,surface states,light absorption,and charge carrier dynamics.These shape-dependent properties significantly govern the photocatalytic efficiency,charge separation,and reaction selectivity.Furthermore,we detail the unique contributions of different QDs families,including carbon QDs,metal oxide QDs,MXene-based QDs,perovskite QDs,and transition metal chalcogenide QDs,each offering distinct advantages in terms of stability,tunability,and light-harvesting efficiency.By correlating morphology with photocatalytic performance,this work emphasizes the strategic engineering of QDs morphology as a pathway to unlock superior performance in water splitting,hydrogen evolution reaction(HER),CO_(2) reduction,H_2O_(2) production,pollutant degradation,oxygen reduction process(ORR),and photocatalytic depolymerization.This work underscores the importance of tailoring QDs morphology to optimize their performance in photocatalysis,focusing on enhancing energy conversion and storage processes. 展开更多
关键词 Quantum dots(QDs) Different synthesis methods Different morphologies Photocatalytic applications
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部