The Virtual Power Plant(VPP),as an innovative power management architecture,achieves flexible dispatch and resource optimization of power systems by integrating distributed energy resources.However,due to significant ...The Virtual Power Plant(VPP),as an innovative power management architecture,achieves flexible dispatch and resource optimization of power systems by integrating distributed energy resources.However,due to significant differences in operational costs and flexibility of various types of generation resources,as well as the volatility and uncertainty of renewable energy sources(such as wind and solar power)and the complex variability of load demand,the scheduling optimization of virtual power plants has become a critical issue that needs to be addressed.To solve this,this paper proposes an intelligent scheduling method for virtual power plants based on Deep Reinforcement Learning(DRL),utilizing Deep Q-Networks(DQN)for real-time optimization scheduling of dynamic peaking unit(DPU)and stable baseload unit(SBU)in the virtual power plant.By modeling the scheduling problem as a Markov Decision Process(MDP)and designing an optimization objective function that integrates both performance and cost,the scheduling efficiency and economic performance of the virtual power plant are significantly improved.Simulation results show that,compared with traditional scheduling methods and other deep reinforcement learning algorithms,the proposed method demonstrates significant advantages in key performance indicators:response time is shortened by up to 34%,task success rate is increased by up to 46%,and costs are reduced by approximately 26%.Experimental results verify the efficiency and scalability of the method under complex load environments and the volatility of renewable energy,providing strong technical support for the intelligent scheduling of virtual power plants.展开更多
Anti-rollover is a critical factor to consider when planning the motion of autonomous heavy trucks.This paper proposed a method for autonomous heavy trucks to generate a path that avoids collisions and minimizes rollo...Anti-rollover is a critical factor to consider when planning the motion of autonomous heavy trucks.This paper proposed a method for autonomous heavy trucks to generate a path that avoids collisions and minimizes rollover risk.The corresponding rollover index is deduced from a 5-DOF heavy truck dynamic model that includes longitudinal motion,lateral motion,yaw motion,sprung mass roll motion,unsprung mass roll motion,and an anti-rollover artificial potential field(APF)is proposed based on this.The motion planning method,which is based on model predictive control(MPC),combines trajectory tracking,anti-rollover APF,and the improved obstacle avoidance APF and considers the truck dynamics constraints,obstacle avoidance,and anti-rollover.Furthermore,by using game theory,the coefficients of the two APF functions are optimised,and an optimal path is planned.The effectiveness of the optimised motion planning method is demonstrated in a variety of scenarios.The results demonstrate that the optimised motion planning method can effectively and efficiently avoid collisions and prevent rollover.展开更多
基金supported by the National Key Research and Development Program of China,Grant No.2020YFB0905900.
文摘The Virtual Power Plant(VPP),as an innovative power management architecture,achieves flexible dispatch and resource optimization of power systems by integrating distributed energy resources.However,due to significant differences in operational costs and flexibility of various types of generation resources,as well as the volatility and uncertainty of renewable energy sources(such as wind and solar power)and the complex variability of load demand,the scheduling optimization of virtual power plants has become a critical issue that needs to be addressed.To solve this,this paper proposes an intelligent scheduling method for virtual power plants based on Deep Reinforcement Learning(DRL),utilizing Deep Q-Networks(DQN)for real-time optimization scheduling of dynamic peaking unit(DPU)and stable baseload unit(SBU)in the virtual power plant.By modeling the scheduling problem as a Markov Decision Process(MDP)and designing an optimization objective function that integrates both performance and cost,the scheduling efficiency and economic performance of the virtual power plant are significantly improved.Simulation results show that,compared with traditional scheduling methods and other deep reinforcement learning algorithms,the proposed method demonstrates significant advantages in key performance indicators:response time is shortened by up to 34%,task success rate is increased by up to 46%,and costs are reduced by approximately 26%.Experimental results verify the efficiency and scalability of the method under complex load environments and the volatility of renewable energy,providing strong technical support for the intelligent scheduling of virtual power plants.
基金Supported by National Natural Science Foundation of China(Grant No.51775269)Jiangsu Provincial Natural Science Foundation of China(Grant No.BK20211190).
文摘Anti-rollover is a critical factor to consider when planning the motion of autonomous heavy trucks.This paper proposed a method for autonomous heavy trucks to generate a path that avoids collisions and minimizes rollover risk.The corresponding rollover index is deduced from a 5-DOF heavy truck dynamic model that includes longitudinal motion,lateral motion,yaw motion,sprung mass roll motion,unsprung mass roll motion,and an anti-rollover artificial potential field(APF)is proposed based on this.The motion planning method,which is based on model predictive control(MPC),combines trajectory tracking,anti-rollover APF,and the improved obstacle avoidance APF and considers the truck dynamics constraints,obstacle avoidance,and anti-rollover.Furthermore,by using game theory,the coefficients of the two APF functions are optimised,and an optimal path is planned.The effectiveness of the optimised motion planning method is demonstrated in a variety of scenarios.The results demonstrate that the optimised motion planning method can effectively and efficiently avoid collisions and prevent rollover.