X-ray activated near-infrared(NIR)persistent luminescence has promising application in biomedical luminous imaging.However,there are strict medical restrictions on X-ray dosage to avoid radiation disease.There is a ne...X-ray activated near-infrared(NIR)persistent luminescence has promising application in biomedical luminous imaging.However,there are strict medical restrictions on X-ray dosage to avoid radiation disease.There is a need to develop a simple strategy to improve persistent luminescence imaging quality using low-dose X-ray.NIR photo-stimulation can enhance the persistent luminescence intensity by transporting the stored energy from deep traps to shallow ones,so that enhanced upconversion-like NIR-to-NIR persistent luminescence imaging can be conducted after low-dose X-ray excitation.However,existing NIR persistent luminescence phosphors have limited absorption in the NIR.To realize optimized NIR photostimulation,Nd^(3+)is proposed as a potential sensitizer to enhance the absorption of persistent luminescence phosphor to 808 nm light.In this study,ZnGa_(2)O_(4):Sn_(0.1),Cr_(0.003),Nd_(0.01)(ZGSC-Nd)was synthesized with a persistent luminescence peak at~700 nm.After activation with 1 Gy of X-ray,its persistent luminescence attenuated to less than 5%of its original intensity after 2800 s.Interestingly,the nearly vanished persistent luminescence was enhanced 5 times after 808 nm photo-stimulation,which was assigned to Nd absorption.Thus,a pseudo-upconverted persistent luminescence from 808 to 700 nm was realized more efficiently.A Nd-sensitized NIR photo-stimulated persistent luminescence mechanism was proposed.This phenomenon was applied for improved luminous imaging of ZGSC-Nd labeled bone cement after a single low-dose X-ray imaging.This work provides an applicable strategy to realize better persistent luminescence imaging after low-dose X-ray activation and will be significant on designing X-ray activated persistent phosphors for biomedical application.展开更多
基金supported by the National Natural Science Foundation of China(52172277,21936004)the Pearl River Talent Plan of Guangdong Province of China(2107GC010344)
文摘X-ray activated near-infrared(NIR)persistent luminescence has promising application in biomedical luminous imaging.However,there are strict medical restrictions on X-ray dosage to avoid radiation disease.There is a need to develop a simple strategy to improve persistent luminescence imaging quality using low-dose X-ray.NIR photo-stimulation can enhance the persistent luminescence intensity by transporting the stored energy from deep traps to shallow ones,so that enhanced upconversion-like NIR-to-NIR persistent luminescence imaging can be conducted after low-dose X-ray excitation.However,existing NIR persistent luminescence phosphors have limited absorption in the NIR.To realize optimized NIR photostimulation,Nd^(3+)is proposed as a potential sensitizer to enhance the absorption of persistent luminescence phosphor to 808 nm light.In this study,ZnGa_(2)O_(4):Sn_(0.1),Cr_(0.003),Nd_(0.01)(ZGSC-Nd)was synthesized with a persistent luminescence peak at~700 nm.After activation with 1 Gy of X-ray,its persistent luminescence attenuated to less than 5%of its original intensity after 2800 s.Interestingly,the nearly vanished persistent luminescence was enhanced 5 times after 808 nm photo-stimulation,which was assigned to Nd absorption.Thus,a pseudo-upconverted persistent luminescence from 808 to 700 nm was realized more efficiently.A Nd-sensitized NIR photo-stimulated persistent luminescence mechanism was proposed.This phenomenon was applied for improved luminous imaging of ZGSC-Nd labeled bone cement after a single low-dose X-ray imaging.This work provides an applicable strategy to realize better persistent luminescence imaging after low-dose X-ray activation and will be significant on designing X-ray activated persistent phosphors for biomedical application.