The wrist unit is crucial in humanoid robots,determining their operational dexterity and precision.To address current challenges such as excessive size,limited Degrees of Freedom(DoFs),and insufficient load capacity,w...The wrist unit is crucial in humanoid robots,determining their operational dexterity and precision.To address current challenges such as excessive size,limited Degrees of Freedom(DoFs),and insufficient load capacity,we propose a 3-DoF humanoid wrist inspired by the human forearm and wrist anatomy.This paper explores the principles of wrist bionic design and introduces a parallel mechanism actuated by a brushless DC motor(BLDC)-ball screw to achieve flexion/extension(F/E)and radial flexion/ulnar deviation(R/U),as along with pronation/supination(P/S)through an end-coupling design.We conducted an analysis on the inverse kinematic model and singularities of the humanoid wrist.Additionally,the workspace and motion capabilities of the humanoid wrist were evaluated.A prototype based on this design was built to demonstrate its motion and functional performance,verifying the feasibility and practicality of the humanoid wrist.This research provides a more compact design approach for future humanoid wrist development.展开更多
Bionic-based robotic legs enable the legged robots with elegant and agile mobility in multi-terrain environment,just like natural living beings.And the smart design could efficiently improve the performance of a robot...Bionic-based robotic legs enable the legged robots with elegant and agile mobility in multi-terrain environment,just like natural living beings.And the smart design could efficiently improve the performance of a robotic leg.Inspired by the simplified human leg structure,we present a 3-DOF robotic leg—OmniLeg,that is capable of making omnidirectional legged locomotion while keeping constant posture of the foot.Additionally,the concentrated drive mode,in which all the motor actuators are installed in the torso and do not move with the leg,minimizes the inertia of the robotic leg.In this paper,the modular design,the kinematics model,the structural analysis,the workspace,and the performance evaluation of the OmniLeg are discussed.Furthermore,we build a prototype based on the proposed design,and the precision of it is verified by the error calibration experiment which is conducted by tracking the trajectory of the prototype’s endpoint.Then,we present an OmniLeg-based single legged mobile robot.The capability of omnidirectional legged locomotion of the OmniLeg is demonstrated by the experiments.展开更多
Single-layer MoSi_(2)N_(4),a high-quality two-dimensional material,has recently been fabricated by chemical vapor deposition.Motivated by this latest experimental work,herein,we apply first principles calculations to ...Single-layer MoSi_(2)N_(4),a high-quality two-dimensional material,has recently been fabricated by chemical vapor deposition.Motivated by this latest experimental work,herein,we apply first principles calculations to investigate the electronic,optical,and photocatalytic properties of alkali-metal(Li,Na,and K)-adsorbed MoSi_(2)N_(4) monolayer.The electronic structure analysis shows that pristine MoSi_(2)N_(4) monolayer exhibits an indirect bandgap(E_(g)=1.89 eV).By contrast,the bandgaps of one Li-,Na-,and K-adsorbed MoSi_(2)N_(4) monolayer are 1.73 eV,1.61 eV,and 1.75 eV,respectively.Moreover,the work function of MoSi_(2)N_(4) monolayer(4.80 eV)is significantly reduced after the adsorption of alkali metal atoms.The work functions of one Li-,Na-,and K-adsorbed MoSi_(2)N_(4) monolayer are 1.50 eV,1.43 eV,and 2.03 eV,respectively.Then,optical investigations indicate that alkali metal adsorption processes substantially increase the visible light absorption range and coefficient of MoSi_(2)N_(4) monolayer.Furthermore,based on redox potential variations after alkali metals are adsorbed,Li-and Na-adsorbed MoSi_(2)N_(4) monolayers are more suitable for the water splitting photocatalytic process,and the Li-adsorbed case shows the highest potential application for CO_(2) reduction.In conclusion,alkali-metal-adsorbed MoSi_(2)N_(4) monolayer exhibits promising applications as novel optoelectronic devices and photocatalytic materials due to its unique physical and chemical properties.展开更多
Histamine in food has attracted widespread attention due to the potential toxicity and associated health risk.However,its influences on immunological components,especially the function of key immune cells,are still po...Histamine in food has attracted widespread attention due to the potential toxicity and associated health risk.However,its influences on immunological components,especially the function of key immune cells,are still poorly known.In this work,we explored the effects of exogenous histamine on the function of key immune cells such as intestinal epithelial cells,dendritic cells,and T cells.The results showed that histamine could affect the expression of allergy-related genes in CMT93 cells at a high dose of histamine.Moreover,it’s found that histamine could cause an imbalance in the levels of relevant immune factors secreted by dendritic cells and T cells,especially those related to allergy.At the same time,the proportion of MHC class IIpositive dendritic cells and the proportion of T helper 2(Th2)cells in CD4^(+)T cells increased after histamine stimulation.We concluded that the presence of a certain level of histamine in food may affect the expression of allergy-related cytokines,disrupt the balance of the immune homeostasis,and potentially lead to adverse immune reactions.This work demonstrated the importance of including the estimation of histamine’s immune safety in aquatic products rather than merely considering the potential risk of food poisoning.展开更多
Inspired by the driving muscles of the human arm,a 4-Degree of Freedom(DOF)concentrated driving humanoid robotic arm is proposed based on a spatial double parallel four-bar mechanism.The four-bar mechanism design redu...Inspired by the driving muscles of the human arm,a 4-Degree of Freedom(DOF)concentrated driving humanoid robotic arm is proposed based on a spatial double parallel four-bar mechanism.The four-bar mechanism design reduces the inertia of the elbow-driving unit and the torque by 76.65%and 57.81%,respectively.Mimicking the human pose regulation strategy that the human arm picks up a heavy object by adjusting its posture naturally without complicated control,the robotic arm features an integrated position-level closed-form inverse solution method considering both geometric and load capacity limitations.This method consists of a geometric constraint model incorporating the arm angle(φ)and the Global Configuration(GC)to avoid joint limits and singularities,and a load capacity model to constrain the feasible domain of the arm angle.Further,trajectory tracking simulations and experiments are conducted to validate the feasibility of the proposed inverse solution method.The simulated maximum output torque,maximum output power and total energy consumption of the robotic arm are reduced by up to 2.0%,13.3%,and 33.3%,respectively.The experimental results demonstrate that the robotic arm can bear heavy loads in a human-like posture,effectively reducing the maximum output torque and energy consumption of the robotic arm by 1.83%and 5.03%,respectively,while avoiding joints beyond geometric and load capacity limitations.The proposed design provides a high payload–weight ratio and an efficient pose control solution for robotic arms,which can potentially broaden the application spectrum of humanoid robots.展开更多
Ethoxyquin(EQ)is a widely used feed additives for aquaculture,but the potential hazard to fish and consumers are not fully understood.In this work,EQ was applied to tilapia fed with either high-fat or low-fat feed,and...Ethoxyquin(EQ)is a widely used feed additives for aquaculture,but the potential hazard to fish and consumers are not fully understood.In this work,EQ was applied to tilapia fed with either high-fat or low-fat feed,and the changes in growth performance and intestinal barrier integrality of genetically improved farmed tilapia was observed.Additionally,the microbiota in the intestinal content and flesh was analyzed by 16S rDNA sequencing,and the flesh metabolites was measured by LC-MS/MS untargeted metabolomics.In the low-fat group,EQ increased weight gain and feed conversion rate,but reduced survival rate.In the high-fat group,only weight gain decreased,and there was no significant effect on feed conversion rate and survival rate.Additionally,the intestinal villi and microbiota diversity was impaired in both feeding conditions.Microbiota analysis revealed that EQ resulted in different composition and lower diversity of the flesh microbiota and upregulated the proportion of potential pathogens.EQ also changed the flesh metabolome,decreasing beneficial metabolites and increasing potential harmful components.This work elucidated the effect of EQ on growth performance of tilapia and implied that it has adverse effects on tilapia and may be passed on to consumers.展开更多
Bacillus coagulans has been extensively studied so far,but there has been a lack of research on its usage in allergy.In this study,we designed to assess the effect of different concentrations of B.coagulans on food al...Bacillus coagulans has been extensively studied so far,but there has been a lack of research on its usage in allergy.In this study,we designed to assess the effect of different concentrations of B.coagulans on food allergy in a BALB/c mouse model of ovalbumin(OVA)-induced food allergy and its effect on gut microbes.The assessment of symptoms,specific immunoglobulin E(IgE),T-cell differentiation,and related gene expression levels in sensitized mice by assay indicated that high doses of oral B.coagulans could alleviate allergic symptoms.Treatment with B.coagulans,in the high-dose group,significantly reduced IgE and IgG1 levels and modulated the balance of T helper type 1 cell(Th1)and Th2 and the expression of relevant genes in the spleen.16S rRNA analysis showed that probiotics improved the structure of the microbiota,in particular by boosting the percentage of Clostridia,Bacteroides vulgatus and Enterococcus faecium,and by increasing the abundance of microbial species,thereby modulating the immune system.Therefore,this study can provide insights into the practical application of B.coagulans doses to alleviate OVA allergy.展开更多
基金supported by the National Natural Science Foundation of China(NO.52175069 and NO.52305043).
文摘The wrist unit is crucial in humanoid robots,determining their operational dexterity and precision.To address current challenges such as excessive size,limited Degrees of Freedom(DoFs),and insufficient load capacity,we propose a 3-DoF humanoid wrist inspired by the human forearm and wrist anatomy.This paper explores the principles of wrist bionic design and introduces a parallel mechanism actuated by a brushless DC motor(BLDC)-ball screw to achieve flexion/extension(F/E)and radial flexion/ulnar deviation(R/U),as along with pronation/supination(P/S)through an end-coupling design.We conducted an analysis on the inverse kinematic model and singularities of the humanoid wrist.Additionally,the workspace and motion capabilities of the humanoid wrist were evaluated.A prototype based on this design was built to demonstrate its motion and functional performance,verifying the feasibility and practicality of the humanoid wrist.This research provides a more compact design approach for future humanoid wrist development.
基金This work was supported by the National Natural Science Foundation of China(NO.52175069).
文摘Bionic-based robotic legs enable the legged robots with elegant and agile mobility in multi-terrain environment,just like natural living beings.And the smart design could efficiently improve the performance of a robotic leg.Inspired by the simplified human leg structure,we present a 3-DOF robotic leg—OmniLeg,that is capable of making omnidirectional legged locomotion while keeping constant posture of the foot.Additionally,the concentrated drive mode,in which all the motor actuators are installed in the torso and do not move with the leg,minimizes the inertia of the robotic leg.In this paper,the modular design,the kinematics model,the structural analysis,the workspace,and the performance evaluation of the OmniLeg are discussed.Furthermore,we build a prototype based on the proposed design,and the precision of it is verified by the error calibration experiment which is conducted by tracking the trajectory of the prototype’s endpoint.Then,we present an OmniLeg-based single legged mobile robot.The capability of omnidirectional legged locomotion of the OmniLeg is demonstrated by the experiments.
基金This research was supported by the National Natural Science Foundation of China(Grant No.11774054,12075036)the talents and high-level paper cultivation plan from the School of Optoelectronic Engineering,Yangtze University.
文摘Single-layer MoSi_(2)N_(4),a high-quality two-dimensional material,has recently been fabricated by chemical vapor deposition.Motivated by this latest experimental work,herein,we apply first principles calculations to investigate the electronic,optical,and photocatalytic properties of alkali-metal(Li,Na,and K)-adsorbed MoSi_(2)N_(4) monolayer.The electronic structure analysis shows that pristine MoSi_(2)N_(4) monolayer exhibits an indirect bandgap(E_(g)=1.89 eV).By contrast,the bandgaps of one Li-,Na-,and K-adsorbed MoSi_(2)N_(4) monolayer are 1.73 eV,1.61 eV,and 1.75 eV,respectively.Moreover,the work function of MoSi_(2)N_(4) monolayer(4.80 eV)is significantly reduced after the adsorption of alkali metal atoms.The work functions of one Li-,Na-,and K-adsorbed MoSi_(2)N_(4) monolayer are 1.50 eV,1.43 eV,and 2.03 eV,respectively.Then,optical investigations indicate that alkali metal adsorption processes substantially increase the visible light absorption range and coefficient of MoSi_(2)N_(4) monolayer.Furthermore,based on redox potential variations after alkali metals are adsorbed,Li-and Na-adsorbed MoSi_(2)N_(4) monolayers are more suitable for the water splitting photocatalytic process,and the Li-adsorbed case shows the highest potential application for CO_(2) reduction.In conclusion,alkali-metal-adsorbed MoSi_(2)N_(4) monolayer exhibits promising applications as novel optoelectronic devices and photocatalytic materials due to its unique physical and chemical properties.
基金financially supported by the Key Project of Zhejiang Provincial Natural Science Foundation of China(LZ22C200003)the National Natural Science Foundation of China(32072290)。
文摘Histamine in food has attracted widespread attention due to the potential toxicity and associated health risk.However,its influences on immunological components,especially the function of key immune cells,are still poorly known.In this work,we explored the effects of exogenous histamine on the function of key immune cells such as intestinal epithelial cells,dendritic cells,and T cells.The results showed that histamine could affect the expression of allergy-related genes in CMT93 cells at a high dose of histamine.Moreover,it’s found that histamine could cause an imbalance in the levels of relevant immune factors secreted by dendritic cells and T cells,especially those related to allergy.At the same time,the proportion of MHC class IIpositive dendritic cells and the proportion of T helper 2(Th2)cells in CD4^(+)T cells increased after histamine stimulation.We concluded that the presence of a certain level of histamine in food may affect the expression of allergy-related cytokines,disrupt the balance of the immune homeostasis,and potentially lead to adverse immune reactions.This work demonstrated the importance of including the estimation of histamine’s immune safety in aquatic products rather than merely considering the potential risk of food poisoning.
基金funded by the National Natural Science Foundation of China(NO.52175069).
文摘Inspired by the driving muscles of the human arm,a 4-Degree of Freedom(DOF)concentrated driving humanoid robotic arm is proposed based on a spatial double parallel four-bar mechanism.The four-bar mechanism design reduces the inertia of the elbow-driving unit and the torque by 76.65%and 57.81%,respectively.Mimicking the human pose regulation strategy that the human arm picks up a heavy object by adjusting its posture naturally without complicated control,the robotic arm features an integrated position-level closed-form inverse solution method considering both geometric and load capacity limitations.This method consists of a geometric constraint model incorporating the arm angle(φ)and the Global Configuration(GC)to avoid joint limits and singularities,and a load capacity model to constrain the feasible domain of the arm angle.Further,trajectory tracking simulations and experiments are conducted to validate the feasibility of the proposed inverse solution method.The simulated maximum output torque,maximum output power and total energy consumption of the robotic arm are reduced by up to 2.0%,13.3%,and 33.3%,respectively.The experimental results demonstrate that the robotic arm can bear heavy loads in a human-like posture,effectively reducing the maximum output torque and energy consumption of the robotic arm by 1.83%and 5.03%,respectively,while avoiding joints beyond geometric and load capacity limitations.The proposed design provides a high payload–weight ratio and an efficient pose control solution for robotic arms,which can potentially broaden the application spectrum of humanoid robots.
基金supported by the National Natural Science Foundation of China(32061133004)the Major Project of Digital Plus Discipline Construction of Zhejiang Gongshang University(SZJ2022A010)the Zhejiang Provincial Natural Science Foundation of China(LGN21C200013).
文摘Ethoxyquin(EQ)is a widely used feed additives for aquaculture,but the potential hazard to fish and consumers are not fully understood.In this work,EQ was applied to tilapia fed with either high-fat or low-fat feed,and the changes in growth performance and intestinal barrier integrality of genetically improved farmed tilapia was observed.Additionally,the microbiota in the intestinal content and flesh was analyzed by 16S rDNA sequencing,and the flesh metabolites was measured by LC-MS/MS untargeted metabolomics.In the low-fat group,EQ increased weight gain and feed conversion rate,but reduced survival rate.In the high-fat group,only weight gain decreased,and there was no significant effect on feed conversion rate and survival rate.Additionally,the intestinal villi and microbiota diversity was impaired in both feeding conditions.Microbiota analysis revealed that EQ resulted in different composition and lower diversity of the flesh microbiota and upregulated the proportion of potential pathogens.EQ also changed the flesh metabolome,decreasing beneficial metabolites and increasing potential harmful components.This work elucidated the effect of EQ on growth performance of tilapia and implied that it has adverse effects on tilapia and may be passed on to consumers.
基金financially supported by the National Key R&D Program of China (2019YFC1605003)the Zhejiang Provincial Natural Science Foundation of China (LGN21C200013)。
文摘Bacillus coagulans has been extensively studied so far,but there has been a lack of research on its usage in allergy.In this study,we designed to assess the effect of different concentrations of B.coagulans on food allergy in a BALB/c mouse model of ovalbumin(OVA)-induced food allergy and its effect on gut microbes.The assessment of symptoms,specific immunoglobulin E(IgE),T-cell differentiation,and related gene expression levels in sensitized mice by assay indicated that high doses of oral B.coagulans could alleviate allergic symptoms.Treatment with B.coagulans,in the high-dose group,significantly reduced IgE and IgG1 levels and modulated the balance of T helper type 1 cell(Th1)and Th2 and the expression of relevant genes in the spleen.16S rRNA analysis showed that probiotics improved the structure of the microbiota,in particular by boosting the percentage of Clostridia,Bacteroides vulgatus and Enterococcus faecium,and by increasing the abundance of microbial species,thereby modulating the immune system.Therefore,this study can provide insights into the practical application of B.coagulans doses to alleviate OVA allergy.