期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
An injectable anti-vascularization functionalized hydrogel for degenerative nucleus pulposus repair
1
作者 Hao Hu Rongcheng Hu +9 位作者 Xihong Fu Yibo Wang Yuan Zhang Shuai Chen Tingxuan Wang shangbin cui Yong Wan Wei Guo Xuenong Zou Chun Liu 《Journal of Materials Science & Technology》 CSCD 2024年第36期143-154,共12页
Neovascularization and inflammatory cell invasion within the nucleus pulposus(NP)constitute pivotal pathological changes during the acceleration stage of intervertebral disc degeneration(IDD).Mesenchy-mal stem cells(M... Neovascularization and inflammatory cell invasion within the nucleus pulposus(NP)constitute pivotal pathological changes during the acceleration stage of intervertebral disc degeneration(IDD).Mesenchy-mal stem cells(MSCs),renowned for their remarkable capacity in intervertebral disc(IVD)regeneration,also exhibit the capability to secrete pro-angiogenic factors,expediting IDD progression under hypoxic conditions.Consequently,we developed a hydrogel comprised of methacrylated hyaluronic acid(HAMA),rat tail collagen I(COL),and MSCs,incorporating the vascular endothelial growth factor receptor(VEGFR)inhibitor cabozantinib(Cabo@HAMA-COL/MSCs hydrogel).This innovative construct aimed to facilitate NP regeneration while mitigating vascularization and inflammation.Our findings revealed that the hydrogel aptly mimicked the mechanical characteristics of NP tissue,exhibiting injectability,low cytotoxicity,and the preservation of the cellular phenotype of NP cells.Co-culturing of MSCs and human umbilical vein endothelial cells(HUVECs)promoted migration,tube formation,and sprouting of HUVECs,which will be inhibited by cabozantinib.In vivo experiments demonstrated that Cabo@HAMA-COL/MSCs hydrogel main-tained disc height,protected NP,and alleviated vascularization and inflammation in a puncture-induced rat caudal IDD model.Consequently,our results substantiate that Cabo@HAMA-COL/MSCs hydrogel can prevent IDD degeneration by ameliorating the vascularization-inflammation pathological microenviron-ment,offering a promising therapeutic strategy for IDD. 展开更多
关键词 Nucleus pulposus regeneration HYDROGEL Cabozantinib Anti-vascularization Pathological microenvironment
原文传递
Regulation of hypoxic stress and oxidative stress in bone grafting: Current trends and future perspectives
2
作者 Hao Hu Xiao Liu +11 位作者 Jun Chen shangbin cui Hualin Yi Gang Wang Renxian Wang Tiansheng Zheng Ben Wan Zhiyu Zhou Yong Wan Manman Gao Dafu Chen Xuenong Zou 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第26期144-153,共10页
Tissue engineering aims to offer large-scale replacement of damaged organs using implants with the com-bination of cells,growth factors and scaffolds.However,the intra/peri-implant region is exposed to se-vere hypoxic... Tissue engineering aims to offer large-scale replacement of damaged organs using implants with the com-bination of cells,growth factors and scaffolds.However,the intra/peri-implant region is exposed to se-vere hypoxic stress and oxidative stress during the early stage of implantation with bone graft materials,which endangers the survival,proliferation and differentiation of seed cells within the implants as well as the host cells surrounding the implants.If the bone graft material could spontaneously and intelligently regulate the hypoxic stress and oxidative stress to a moderate level,it will facilitate the vascularization of the implants and the rapid regeneration of the bone tissue.In this review,we will first introduce the signaling pathways of cellular response under hypoxic stress and oxidative stress,then present the clas-sical material designs and examples in response to hypoxic stress and oxidative stress.And finally,we will address the important role of epigenetic mechanisms in the regulation of hypoxic stress and oxida-tive stress and describe the potential applications and prospective smart bone graft materials based on novel epigenetic factors against hypoxic stress and oxidative stress in bone repair.The main content of this review is summarized in the following graphical abstract. 展开更多
关键词 Hypoxic stress Oxidative stress Bone repair Bone graft material Epigenetic regulation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部