期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
The integration of microelectronic and photonic circuits on a single silicon chip for high-speed and low-power optoelectronic technology
1
作者 Rajeev Gupta Ajay kumar +17 位作者 Manoj kumar Rajesh Singh Anita Gehlot Purnendu Shekhar Pandey Neha Yadav Kailash Pandey Ashish Yadav Neha Gupta Ranjeet Brajpuriya shalendra kumar Ajay Singh Verma Tanuj kumar Yongling Wu Zheng Hongyu Abhijit Biswas Ajay Mittal Aniruddha Mondal Romanov Oleksandr Ivanovich 《Nano Materials Science》 2025年第3期305-315,共11页
The combining microelectronic devices and associated technologies onto a single silicon chip poses a substantial challenge.However,in recent years,the area of silicon photonics has experienced remarkable advancements ... The combining microelectronic devices and associated technologies onto a single silicon chip poses a substantial challenge.However,in recent years,the area of silicon photonics has experienced remarkable advancements and notable leaps in performance.The performance of silicon on insulator(SOI)based photonic devices,such as fast silicon optical modulators,photonic transceivers,optical filters,etc.,have been discussed.This would be a step forward in creating standalone silicon photonic devices,strengthening the possibility of single on-chip nanophotonic integrated circuits.Suppose an integrated silicon photonic chip is designed and fabricated.In that case,it might drastically modify these combined photonic component costs,power consumption,and size,bringing substantial,perhaps revolutionary,changes to the next-generation communications sector.Yet,the monolithic integration of photonic and electrical circuitry is a significant technological difficulty.A complicated set of factors must be carefully considered to determine which application will have the best chance of success employing silicon-based integrated product solutions.The processing limitations connected to the current process flow,the process generation(sometimes referred to as lithography node generation),and packaging requirements are a few of these factors to consider.This review highlights recent developments in integrated silicon photonic devices and their proven applications,including but not limited to photonic waveguides,photonic amplifiers and filters,onchip photonic transceivers,and the state-of-the-art of silicon photonic in multidimensional quantum systems.The investigated devices aim to expedite the transfer of silicon photonics from academia to industry by opening the next phase in on-chip silicon photonics and enabling the application of silicon photonic-based devices in various optical systems. 展开更多
关键词 Microelectronic PHOTONICS Silicon chip Optical modulators Photonic transceivers Optical filters
在线阅读 下载PDF
Electrochemical performance of a symmetric supercapacitor device designed using laser-produced multilayer graphene 被引量:1
2
作者 Gargi Dhiman Kavita kumari +6 位作者 Bon-Heun Koo Faheem Ahmed Nagih M.Shaalan Saurabh Dalela Parvez A.Alvi Ranjeet kumar Brajpuriya shalendra kumar 《新型炭材料(中英文)》 SCIE EI CAS CSCD 北大核心 2024年第6期1128-1143,共16页
We report an economical approach for the fabrication of laser-produced graphene(LPG)electrodes,which results in an improved electrochemical performance.Polyimide polymer was used as the starting material for LPG synth... We report an economical approach for the fabrication of laser-produced graphene(LPG)electrodes,which results in an improved electrochemical performance.Polyimide polymer was used as the starting material for LPG synthesis and was irradiated under ambient conditions with a CO_(2) laser.The prepared LPG samples were characterized by Raman spectroscopy and FTIR,which validated the formation of multilayer graphene containing sp2 hybridized C=C bonds.FE-SEM revealed three-dimensional(3D)sheet-like structures,while HR-TEM images showed lattice planes with an interplanar spacing of approximately 0.33 nm,corres-ponding to the(002)plane of graphene.Their electrochemical performance showed a remarkable areal specific capacitance(CA)of 51 mF cm^(−2)(170 F g^(-1))at 1 mA cm^(−2)(3.3 A g^(-1))in a three-electrode configuration with 1 mol L^(−1) KOH as the aqueous electrolyte.The LPG electrodes produced an energy density of~3.5μWh cm^(−2) and a power density of~350μW cm^(−2),demonstrating signific-ant energy storage ability.They also had an excellent cycling stability,retaining 87%of their specific capacitance after 3000 cycles at 1 mA/cm^(2).A symmetric supercapacitor fabricated with LPG electrodes and the 1 mol L^(−1) KOH electrolyte had a specific capacit-ance of 23 mF cm^(−2) and showed excellent retention after 10000 cycles,showing LPG’s potential for use in supercapacitors. 展开更多
关键词 SUPERCAPACITORS GRAPHENE LPG Electrochemical studies Charge storage mechanism
在线阅读 下载PDF
Chemically inducing room temperature spin-crossover in double layered magnetic refrigerants Pr1.4+xSr1.6-xMn2O7(0.0≤x≤0.5)
3
作者 Akshay kumar Kavita kumari +4 位作者 Mohit K.Sharma Ankush Vij shalendra kumar Seok-Hwan Huh Bon Heun Koo 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第29期232-242,共11页
The height of total entropy(S)for a magnetic refrigerant material is essentially concerned with the magnetic and structural transitions.However,the participation of such transitions in layered materials is not well un... The height of total entropy(S)for a magnetic refrigerant material is essentially concerned with the magnetic and structural transitions.However,the participation of such transitions in layered materials is not well understood.Therefore,the purpose of this work is to investigate the interplay between double layer lattice with their single perovskite counterpart,to achieve optimal magnetocaloric performance.A series of self-doped Pr_(1.4+x)Sr_(1.6-x)Mn_(2)O_(7)(0.0≤x≤0.5)Ruddlesden-Popper(R-P)perovskite have been prepared through the solid-state sintering method.With increasing the Pr-stoichiometry,the lattice faults have increased and the double layer lattice dramatically disintegrates into single perovskite structure.Due to the reduction of bilayer R-P phase into single perovskite the spin crossover occurs from weak bilayer(T=304 K)interactions towards the strong three-dimensional(T=308 K)interactions respectively.This series consistently develops thermomagnetic irreversibility in zero-field cooled(ZFC)-field cooled(FC)magnetization,which is indicative of a spin-glass state.The glassy nature has been ascribed collectively to the lattice strain produced because of dislocations and to an antiferromagnetic phase segregated at the surface.The maximum value of temperature average entropy change(TEC)and adiabatic temperature(ΔT)has enhanced nearly by 4 folds from 0.53 J kg^(-1)K^(-1),0.59 K(for x=0.0)up to 1.85 J kg^(-1)K^(-1),10 K(for x=0.5)at 2.5 T,respectively.Additionally,the room temperature relative cooling power has improved from 26.94 J/kg up to 77.84 J/kg with an applied field of 2.5 T.Our findings in this work suggest that the controlled reduction of double layer lattice into single perovskite and/or existence of both phases simultaneously in bilayer R-P manganites may be very effective in obtaining the desirable characteristics of magnetocaloric effects. 展开更多
关键词 Magnetic refrigerant Bilayer manganites Magnetocaloric effect Ruddlesden-popper perovskite Relative cooling power
原文传递
Effect of Cu seed on the synthesis and characterization of FeCo alloy nano-particles by using polyol method 被引量:1
4
作者 Uk Rae CHO Young Min LEE +2 位作者 shalendra kumar Chan Gyu LEE Bon Heun KOO 《Science China(Technological Sciences)》 SCIE EI CAS 2009年第1期19-22,共4页
Fine metal particles with uniform shape, narrow size distribution and high purity are increasingly needed for specific uses in high tech industrial application. We report the direct chemical synthesis of FeCo alloy pa... Fine metal particles with uniform shape, narrow size distribution and high purity are increasingly needed for specific uses in high tech industrial application. We report the direct chemical synthesis of FeCo alloy particles using the mixture of FeCl2·4H2O, Co (Ac)2·4H2O (Ac: acetate) and NaOH in ethylene glycol, and then obtained FeCo alloy particles better dispersed by adding the polyvinylpyrrolidone (PVP) and also the size could be controlled by adding copper. The prepared nano-particles were characterized using FESEM, XRD and VSM. The mean diameter of these particles was varied in the range of sub- mi- crometer to nanometer with metal-ion concentration. FeCo particles showed the typical soft magnetic properties. 展开更多
关键词 POLYOL method FECO alloy NANOPARTICLE CU SEED soft magnetic
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部