期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Evaluation of the combined influence of geological layer property and in-situ stresses on fracture height growth for layered formations
1
作者 Peng Tan Zhao-Wei Chen +2 位作者 Liu-Ke Huang Qing Zhao sha-rui shao 《Petroleum Science》 SCIE EI CAS CSCD 2024年第5期3222-3236,共15页
Fracture geometry is important when stimulating low-permeability reservoirs for natural gas or oil production. The geological layer(GL) properties and contrasts in in-situ stress are the two most important parameters ... Fracture geometry is important when stimulating low-permeability reservoirs for natural gas or oil production. The geological layer(GL) properties and contrasts in in-situ stress are the two most important parameters for determination of the vertical fracture growth extent and containment in layered rocks. However, the method for assessing the cumulative impact on growth in height remains ambiguous. In this research, a 3D model based on the cohesive zone method is used to simulate the evolution of hydraulic fracture(HF) height in layered reservoirs. The model incorporates fluid flow and elastic deformation, considering the friction between the contacting fracture surfaces and the interaction between fracture components. First, an analytical solution that was readily available was used to validate the model. Afterwards, a quantitative analysis was performed on the combined impacts of the layer interface strength, coefficient of interlayer stress difference, and coefficient of vertical stress difference.The results indicate that the observed fracture height geometries can be categorized into three distinct regions within the parametric space: blunted fracture, crossed fracture, and T-shaped fracture.Furthermore, the results explained the formation mechanism of the low fracture height in the deep shale reservoir of the Sichuan Basin, China, as well as the distinction between fracture network patterns in mid-depth and deep shale reservoirs. 展开更多
关键词 Deep shale Hydraulic fracturing HF propagation Fracture interaction Cohesive zone method
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部